AN UPDATED MATLAB® PACKAGE FOR APPROXIMATING THE SOLUTION TO A CONTINUOUS-TIME INFINITE HORIZON STOCHASTIC OPTIMAL CONTROL PROBLEM

JEFFREY AZZATO* & JACEK B. KRAWCZYK

ABSTRACT. This paper describes a suite of MATLAB® routines devised to provide an approximately optimal solution to an infinite-horizon stochastic optimal control problem. The suite is an updated version of that described in [Kra01b]. Its routines implement a policy improvement algorithm to optimise a Markov decision chain approximating the original control problem, as described in [Kra01c].

2008 Working Paper
School of Economics and Finance

JEL Classification: C63 (Computational Techniques), C87 (Economic Software).
AMS Categories: 93E25 (Computational methods in stochastic optimal control).
Authors’ Keywords: Computational economics, Approximating Markov decision chains.

This report documents 2007 research into Computational Economics Methods directed by Jacek B. Krawczyk

Correspondence should be addressed to:

Jacek B. Krawczyk. Faculty of Commerce and Administration, Victoria University of Wellington, P.O. Box 600, Wellington, New Zealand. Fax: +64-4-4635014 Email: J.Krawczyk@vuw.ac.nz Webpage: http://www.vuw.ac.nz/staff/jacek_krawczyk

*Supported by the Victoria University Research Fund, Award Number 1496, 2007.
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1. InfSOCSol</td>
<td>1</td>
</tr>
<tr>
<td>1.1. Purpose</td>
<td>1</td>
</tr>
<tr>
<td>1.2. Syntax</td>
<td>2</td>
</tr>
<tr>
<td>2. InfContRule</td>
<td>6</td>
</tr>
<tr>
<td>2.1. Purpose</td>
<td>6</td>
</tr>
<tr>
<td>2.2. Syntax</td>
<td>6</td>
</tr>
<tr>
<td>3. InfSim</td>
<td>7</td>
</tr>
<tr>
<td>3.1. Purpose</td>
<td>7</td>
</tr>
<tr>
<td>3.2. Implementation</td>
<td>7</td>
</tr>
<tr>
<td>3.3. Syntax</td>
<td>8</td>
</tr>
<tr>
<td>4. InfValGraph</td>
<td>9</td>
</tr>
<tr>
<td>4.1. Purpose</td>
<td>9</td>
</tr>
<tr>
<td>4.2. Syntax</td>
<td>9</td>
</tr>
<tr>
<td>Appendix A. Example of use of InfSOCSol2</td>
<td>10</td>
</tr>
<tr>
<td>A.1. Optimisation Problem</td>
<td>10</td>
</tr>
<tr>
<td>A.2. Solution Syntax</td>
<td>12</td>
</tr>
<tr>
<td>A.3. Retrieving Results Syntax</td>
<td>12</td>
</tr>
<tr>
<td>References</td>
<td>15</td>
</tr>
</tbody>
</table>
Introduction

Computing the solution to a stochastic optimal control problem is difficult. A method of approximating a solution to a given infinite horizon stochastic optimal control (soc) problem using Markov chains was outlined in [Kra01c]. This paper describes a suite of MATLAB\textregistered1 routines implementing this method of approximating a solution to a continuous infinite horizon soc problem.

The suite of routines developed updates and extends that described in [Kra01b]. The presentation given here is based on that given in [AK06], which describes a similar suite of MATLAB\textregistered routines that may be used to solve finite horizon soc problems.

The method used here deals with discounted infinite horizon stochastic optimal control problems having the form

\[
\min_u J(u, x_0) = \mathbb{E} \left[\int_0^\infty e^{-\rho t} f(x(t), u(t)) \, dt \right | x(0) = x_0
\]

subject to

\[
dx = g(x(t), u(t)) \, dt + b(x(t), u(t)) \, dW
\]

where \(W\) is a standard Wiener process. In the optimisation method, we also allow for constraints on the control and state variables (local and mixed).

Note: Throughout the paper, the dimension of the state space shall be denoted by \(d\), the dimension of the control by \(c\), and the number of variables which are affected by noise by \(N\) (\(N \leq d\)).

To solve (1) subject to (2) and local constraints, we developed a package of MATLAB\textregistered programmes similar to those introduced in [AK06]. The package is called InfSOCSo12 and is composed of four main modules:

1. InfSOCSo1
2. InfContRule
3. InfSim
4. InfValGraph

InfSOCSo1 discretises a given soc problem and then solves this “discretisation.” InfContRule derives graphs of continuous-time, continuous-state control rules from the InfSOCSo1 solution. InfSim simulates the continuous system using such a control rule (also derived from the InfSOCSo1 solution). InfValGraph provides an automated means of computing expected values for the continuous system as initial conditions change.

1. InfSOCSo1

1.1. Purpose. InfSOCSo1 takes the given soc problem and approximates it with a Markov decision chain, which it then solves. This results in a discrete-time, discrete-space control rule. InfSOCSo1 does not perform the interpolation necessary to convert

1See [Mat92] for an introduction to MATLAB\textregistered.
this discrete-time, discrete-space control rule into a continuous-time, continuous-state control rule (this is done by InfSim).

1.2. Syntax. InfSOCsol is called as follows.

\[
\text{InfSOCsol('DeltaFunctionFile', 'InstantaneousCostFunctionFile', StateLB, StateUB, StateStep, TimeStep, DiscountRate, 'ProblemFile', Options, A, b, Aeq, beq, ControlLB, ControlUB, 'UserConstraintFunctionFile')}
\]

Note: It is easiest to define these arguments in a script, and then call that script in MATLAB®. See Appendix 4.2 for an example of this.

DeltaFunctionFile:
A string giving the name (no .m extension) of a file containing a MATLAB® function representing the equations of motion.

If the problem is deterministic, the function returns a vector of length \(d\) corresponding to the value of \(g(x(t), u(t))\).

If the problem is stochastic then the function returns a vector of length \(2d\), the first \(d\) elements of which are \(g(x(t), u(t))\) and the second \(d\) elements of which are \(b(x(t), u(t))\).

If some of the variables are undisturbed by noise, (i.e., \(N < d\)), then the variables for which the diffusion term is constantly 0 must follow those that are disturbed by noise.

In either case the function should have a header of the form

\[
\text{function Value = Delta(Control, StateVariables, Time)}
\]

where Control is a vector of length \(c\), StateVariables is a vector of length \(d\), and Time is a scalar. The argument Time is not used by InfSOCsol, but its inclusion allows use of the DeltaFunctionFile in a finite horizon context by the SOCsol routine of the SOCsol14L package (see [AK06]).

InstantaneousCostFunctionFile:
A string giving the name (no .m extension) of a file containing a MATLAB® function representing the instantaneous cost function \(f(x(t), u(t))\).²

The function should have a header of the form

\[
\text{function Value = Cost(Control, StateVariables, Time)}
\]

where Control is a vector of length \(c\), StateVariables is a vector of length \(d\), and Time is a scalar. As for the DeltaFunctionFile, the argument Time is not used by InfSOCsol, but its inclusion allows use of the InstantaneousCostFunctionFile in a finite horizon context by the SOCsol routine of the SOCsol14L package (see [AK06]).

²A maximisation problem can be converted into a minimisation problem by multiplying the performance criterion by \(-1\). Consequently, if the soc problem to be solved involves maximisation, the negative of its instantaneous cost should be specified in InstantaneousCostFunctionFile.
As InfSOCSol only requires the discount rate ρ for its value determination step, there is no need to specify the discount factor $e^{-\rho t}$ in the InstantaneousCostFunctionFile.

StateLB, StateUB, and StateStep:
These determine the finite state grid for the Markov chain that we hope will approximate the soc problem.

The value of StateLB is the least possible state, while the value of StateUB is the maximum possible state.\(^3\)

The value of StateStep determines the distances between points of the state grid. It has to be chosen so that its entry corresponding to the i^{th} state variable exactly divides the difference between the corresponding entries of StateLB and StateUB. Of course, step size need not be the same for all state variables.

TimeStep:
The scalar δ to be used when formulating the Markov decision chain approximating the soc problem (see [Kra01c]). As small values of δ are frequently advantageous and computation time depends predominantly on the size of the StateStep, a relatively small choice TimeStep is advisable.

See [AK06] for further information on choosing the StateStep and TimeStep.

DiscountRate:
The scalar ρ.

ProblemFile:
A string giving the name (with no extension) of the problem. This name is used to store the solution on disk. InfSOCSol produces two files with this name: one with the extension .DPP, which contains the parameters used to compute the Markov decision chain, and one with the extension .DPS, which contains the solution itself.

These files are used by InfSim to produce the continuous-time, continuous-state control rule. Note that the routines InfContRule, InfSim and InfValGraph (all explained below) require that the .DPP and .DPS files exist and remain unchanged.

Options:
This vector (in fact, a cell array) of strings controls various internal settings that need only be adjusted infrequently. Two types of options can be set using the Options vector: options directly related to InfSOCSol, and options used by fmincon, a MATLAB$^\text{\textcopyright}$ routine employed by InfSOCSol.

The user need only specify those options that are to be changed from their default values. If all options are to remain at their default values, then Options should be passed as empty, i.e., as \{ \}.

\(^3\)The solution can be disturbed close to the state boundaries StateLB and StateUB. Consequently, these should be chosen “generously.” Of course, larger state grids require greater computation times.
In order to alter an option from its default value, the option should be named (in a string) followed directly by the value to which it is to be set (in another string). For example, if it was desired to set the \texttt{ControlDimension} option to 2 and turn on the \texttt{Display}, then \texttt{Options} could be set as

\[
\text{Options} = \{ \texttt{'ControlDimension'} '2' \texttt{'Display'} 'on' \};
\]

Note that the number 2 is entered as the string \texttt{‘2’}. While it is important that an option be followed directly by the value to which it is to be set, option-value pairs can be given in any order. So the above is the same as

\[
\text{Options} = \{ \texttt{'Display'} 'on' \texttt{'ControlDimension'} '2' \};
\]

The options related directly to \texttt{InfSOCSol} are:

1. \texttt{ControlDimension}. This specifies the value c for your problem. It must be given as a natural number (in a string). The default value is 1.
2. \texttt{StochasticProblem}. This should be set to \texttt{‘yes’} if your problem is stochastic. The default value is \texttt{‘no’}, i.e., the problem is assumed to be deterministic.
3. \texttt{NoisyVars}. This should be set to the number N (in a string) if $N < d$. The default value is d, i.e., all variables are assumed to be noisy. If the problem is deterministic, \texttt{InfSOCSol} ignores the value of \texttt{NoisyVars}.
4. \texttt{PolicyIterations}. This specifies the maximum number of value iterations that may be performed in seeking a solution (see \cite{Kra01c}). The default value is 25.

In general, \texttt{fmincon} can use either large-scale or medium-scale algorithms. While large-scale algorithms are more efficient for some problems, the use of such an algorithm requires differentiability of the function to be minimised. This is not generally true of the cost-to-go functions that \texttt{InfSOCSol} passes to \texttt{fmincon}. Consequently, \texttt{InfSOCSol} employs only \texttt{fmincon}’s medium-scale algorithms.

As a result of this, those \texttt{fmincon} options specific to large-scale algorithms are not set through the \texttt{Options} vector, but instead passed their default values by \texttt{InfSOCSol}. However, the \texttt{fmincon} options specific to medium-scale algorithms may be set using the \texttt{Options} vector. These include:

1. \texttt{Diagnostics}. This controls whether \texttt{fmincon} prints diagnostic information about the cost-to-go functions that it minimises. The default value is \texttt{‘off’}, but \texttt{Diagnostics} may also be set to \texttt{‘on’}.
2. \texttt{Display}. This controls \texttt{fmincon}’s display level. The default value is \texttt{‘off’} (no display), but \texttt{Display} may also be set to \texttt{‘iter’} (display output for each of \texttt{fmincon}’s iterations), \texttt{‘final’} (display final output for each call to \texttt{fmincon}) and \texttt{‘notify’} (display output only if non-convergence is encountered).
3. \texttt{MaxFunEvals}. This sets \texttt{fmincon}’s maximum allowable number of function evaluations. The default value is 100c, but \texttt{MaxFunEvals} may be set to any natural number (in a string).
4. \texttt{MaxIter}. This sets \texttt{fmincon}’s maximum allowable number of iterations. The default value is 400, but \texttt{MaxIter} may be set to any natural number (in a string).
5. **MaxSQPIter.** This sets fmincon’s maximum allowable number of sequential quadratic programming steps. The default value is ∞, but MaxSQPIter may be set to any natural number (in a string).

6. **TolCon.** This sets fmincon’s termination tolerance on constraint violation. The default value is 10^{-6}, but TolCon may be set to any positive real number (in a string).

7. **TolFun.** This sets fmincon’s termination tolerance on function evaluation. The default value is 10^{-6}, but TolFun may be set to any positive real number (in a string).

8. **TolX.** This sets fmincon’s termination tolerance on optimal control evaluation. The default value is 10^{-6}, but TolX may be set to any positive real number (in a string).

If necessary, it is also possible to set:

11. **DerivativeCheck.** This controls whether fmincon compares user-supplied analytic derivatives (e.g., gradients or Jacobians) to finite differencing derivatives. The default value is ‘off’, but DerivativeCheck may also be set to ‘on’.

12. **DiffMaxChange.** This sets fmincon’s maximum allowable change in variables for finite difference derivatives. The default value is 0.1, but DiffMaxChange may be set to any positive real number (in a string).

13. **DiffMinChange.** This sets fmincon’s minimum allowable change in variables for finite difference derivatives. The default value is 10^{-8}, but DiffMaxChange may be set to any positive real number (in a string).

14. **OutputFcn.** A string containing the name (no .m extension) of a file containing a MATLAB® function that is to be called by fmincon at each of its iterations. Such a function is typically used to retrieve/display additional data from fmincon.

See *Optimization Toolbox: Function Reference: Output Function* in MATLAB® help for more information on output functions.

For more information on fmincon, and fmincon options in particular, see *Optimization Toolbox: fmincon* and *Optimization Toolbox: Function Reference: Optimization Parameters* in MATLAB® help.

A and b:

These allow for the imposition of the linear inequality constraint(s) $A\mathbf{u} \leq \mathbf{b}$ on the control variable(s). In general, A is a matrix and b is a vector. If there are no linear inequality constraints on the control variable(s), both A and b should be passed as empty: [].

A_{eq} and beq:

These allow for the imposition of the linear equality constraint(s) $A_{eq} \cdot \mathbf{u} = \mathbf{beq}$ on the control variable(s). In general, A_{eq} is a matrix and beq is a vector. If there are no linear equality constraints on the control variable(s), both A_{eq} and beq should be passed as empty: [].

5
ControlLB and ControlUB:

In general, vectors of lower and upper bounds (respectively) on the control variables. If a control variable has no lower bound, the corresponding entry of ControlLB should be set to $-\infty$. Similarly, if a control variable has no upper bound, the corresponding entry of ControlUB should be set to ∞.

UserConstraintFunctionFile:

A string containing the name (no .m extension) of a file containing a MATLAB® function representing problem constraints (in particular, non-linear problem constraints). This function should return the value of inequality constraints as a vector Value1 and the value of equality constraints as a vector Value2, where inequality constraints are written in the form $k(u,x) \leq 0$ and equality constraints are written in the form $keq(u,x) = 0$.

The function should have a header of the form

```
function [Value1, Value2] = Constraint(Control, StateVariables, TimeStep)
```

where Control is a vector of length c, StateVariables is a vector of length d, and TimeStep is a scalar.

Note that the TimeStep argument makes the time step for the relevant Markov chain time readily available for incorporation in constraints. It should not be confused with the Time arguments of the other user-specified functions, which are not used by InfSOCSol.

In the absence of constraints requiring the use of UserConstraintFunctionFile, UserConstraintFunctionFile should be passed as empty: [].

2. InfContRule

2.1 Purpose. InfContRule produces graphs of the continuous-time, continuous-state control rule derived from the solution computed by InfSOCSol. Each control rule graph holds all but one state variable constant.

2.2 Syntax. InfContRule is called as follows.

```
InfContRule(‘ProblemFile’, InitialCondition, VariableOfInterest, LineSpec);
ControlValues = InfContRule(⋯);
```

Calling InfContRule without any output arguments produces control rule profiles and displays some technical information in the MATLAB® command window. However, InfContRule may also be called with a single output argument. In this instance,
InfContRule also assigns the output argument the values of the control rules in the form of an $M \times c$ array, where

$$M = \frac{\text{StateUB}_{\text{VariableOfInterest}} - \text{StateLB}_{\text{VariableOfInterest}}}{\text{StateStep}_{\text{VariableOfInterest}}} + 1.$$

So the rows of this array correspond to points of the VariableOfInterest-th dimension of the state grid, while its columns correspond to control dimensions.

ProblemFile:
A string containing the name (with no extension) of the problem. This name is used to retrieve the solution produced by InfSOSol from the disk. InfContRule requires that the files produced by InfSOSol exist and remain unchanged.

InitialCondition:
A vector determining the values of the fixed state variables. A value must be given for the VariableOfInterest as a placeholder, although this value is not used.

VariableOfInterest:
A scalar telling the routine which of the state variables to vary, i.e., numbers like “1” or “2” etc. have to be entered in accordance with the state variables’ order in the function DeltaFunctionFile. The control rule profile appears with the nominated state variable along the horizontal axis.

LineSpec:
This specifies the line style, marker symbol and colour of timepaths. It is a string of the format discussed in the MATLAB® Functions: LineSpec section of MATLAB® help. If LineSpec is not specified, it defaults to ‘r-’ (a solid red line without markers).

3. **InFSim**

3.1. **Purpose.** InFSim derives a continuous-time, continuous-state control rule from the solution computed by InfSOSol and then simulates the continuous system using this rule. It returns graphs of the timepaths of the state and control variables and the associated performance criterion values for one or more simulations.

3.2. **Implementation.** The derivation of the continuous-time, continuous-state control rule from the solution computed by InfSOSol requires some form of interpolation in both state and time. In the effort to keep the script simple the interpolation in state is linear. States which are outside the state grid simply move to the nearest state grid point. For times between Markov chain times, the control profile for the most recent Markov chain time is used.

The differential equation which governs the evolution of the system is simulated by interpolation of its Euler-Maruyama approximation. The performance criterion integral is approximated using the left-hand endpoint rectangle rule.
3.3. **Syntax.** InfSim is called as follows.

\[
\text{SimulatedValue} = \text{InfSim('ProblemFile', InitialCondition, SimulationTimeStep, NumberOfSimulations, LineSpec, TimepathOfInterest, UserSuppliedNoise)}
\]

ProblemFile:
A string containing the name (with no extension) of the problem. This name is used to retrieve the solution produced by InfSOSol from the disk. InfSim requires that the files produced by InfSOSol still exist and remain unchanged.

InitialCondition:
This is a vector of length \(d\) that contains the initial condition: the point from which the simulation starts.

SimulationTimeStep:
This is a vector of step lengths that partition interval \([0, T]\); i.e., their sum should be \(T\).

With more simulation steps there is less error in approximating the equations of motion using the Euler-Maruyama scheme and in approximating the performance criterion using the left-hand endpoint rectangle method.

If no SimulationTimeStep vector is given, the SimulationTimeStep vector defaults to the TimeStep vector used for computing the ProblemFile.

NumberofSimulations:
This is the number of simulations that should be performed. If NumberofSimulations is passed as negative, InfSim performs \(|\text{NumberofSimulations}|\) simulations, but does not plot any timepaths.

Multiple simulations are normally performed when dealing with a stochastic system. Each simulation uses a randomly determined noise realisation (unless this is suppressed by the UserSuppliedNoise argument).

If NumberofSimulations is not specified, it defaults to 1.

LineSpec:
This specifies the line style, marker symbol and colour of timepaths. It is a string of the format discussed in the MATLAB® Functions: LineSpec section of MATLAB® help.

If LineSpec is not specified, it defaults to ‘r-’ (a solid red line without markers).

TimepathOfInterest:
This is an integer between 0 and \(d + c\) (inclusive) that specifies which timepath(s) InfSim is to plot. If TimepathOfInterest is passed the value 0, InfSim plots timepaths for all state and control variables. Otherwise, if TimepathOfInterest is passed the
value $i > 0$, InfSim plots the timepath of the i-th variable, where state variables precede control variables.

If `TimepathOfInterest` is not specified, it defaults to 0.

UserSuppliedNoise:

This entirely optional argument enables the user to override the random generation of noise realisations. If `UserSuppliedNoise` is passed the value 0, a constantly zero noise realisation is used. Otherwise, `UserSuppliedNoise` should be passed a matrix with N columns and a row for each entry of `SimulationTimeStep`.

Note that `NumberOfSimulations` should be 1 if `UserSuppliedNoise` is specified. If `UserSuppliedNoise` is left unspecified, InfSim randomly selects a standard Gaussian noise realisation for each simulation. Naturally, `UserSuppliedNoise` has no effect on deterministic problems.

SimulatedValue:

The MATLAB® output consists of a vector of the values of the performance criterion for each of the simulations performed.

If the problem is stochastic and noise realisations are random, then the average of the values from a large number of simulations can be used as an approximation to the expected value of the continuous stochastic system (under the continuous-time, continuous-state control rule derived from the solution computed by InfS0CSol). This average is left for the user to compute.

4. InfValGraph

4.1. Purpose.

InfValGraph automates the process of computing expected values for the continuous system (under the continuous-time, continuous-state control rule derived from the solution computed by InfS0CSol) as the initial conditions change. In a similar spirit to InfContRule above, it deals with one state variable at a time (identified by `VariableOfInterest`), while the other state variables remain fixed.

4.2. Syntax.

InfValGraph is called as follows.

```matlab
InfValGraph('ProblemFile', InitialCondition, 
            VariableOfInterest, VariableOfInterestValues, 
            SimulationTimeStep, NumberOfSimulations, ScaleFactor, 
            LineSpec)
```

ProblemFile:

A string containing the name (with no extension) of the problem. This name is used to retrieve the solution produced by InfS0CSol from the disk. InfValGraph requires that the files produced by InfS0CSol still exist and remain unchanged.
InitialCondition:
A vector determining the values of the fixed state variables. A value must be given for the VariableOfInterest as a placeholder, although this value is not used.

IndependentVariable:
This scalar tells the routine which of the state variables to vary. The value graphs appear with this state variable along the horizontal axis.

VariableOfInterest:
A scalar telling the routine which of the state variables to vary. The value graph appears with this state variable along its horizontal axis.

VariableOfInterestValues:
A vector containing the values of the VariableOfInterest at which the system’s performance is to be evaluated.

SimulationTimeStep:
This is as for InfSim above.

NumberOfSimulations:
This is the number of simulations that should be performed. NumberOfSimulations behaves like the similarly-named argument in InfSim above, except if passed the value 1 for a stochastic problem, it yields a constantly zero noise realisation.

If NumberOfSimulations is not specified, it defaults to 1.

ScaleFactor:
This simply scales all the resulting values by the given factor.

Maximisation problems must have all payoffs replaced by their negatives before entry into InfSOCSol, as it assumes that problems require minimisation. Setting the ScaleFactor to -1 “corrects” the sign on payoffs for maximisation problems.

Naturally, if ScaleFactor is not specified, it defaults to 1.

Appendix A. Example of use of InfSOCSol2

This example corresponds to that given in the appendix of [AK06] (and to Example 2.3.1 of [Kra01a]), but with discounting and an infinite horizon.

A.1. Optimisation Problem. The optimisation problem is determined in \mathbb{R}^1 by

\[
\min_u J(u, x_0) := \frac{1}{2} \int_0^\infty e^{-\rho t} (u(t)^2 + x(t)^2) dt
\]
subject to
\[\dot{x} = u, \text{ and} \]
\[x(0) = \frac{1}{2}. \]
As this problem is formulated with an infinite horizon, discounting is necessary. Here we take the discount rate to be $\rho := \frac{9}{10}$, giving a discount factor of $e^{-\rho} = 0.4066$ (4 s.f.).

A Markovian approximation to this problem is to be formed and then solved. The optimisation call for the routine that does this is \texttt{InfSOCSol(· · ·)}, where the arguments inside the brackets are the same as those of Section 1.2. Details of the specification of these arguments for this example are given below.

The following functions are defined by the user and saved in MATLAB® as .m files in locations on the path. Each file has a name (for example \texttt{Delta.m}), and consists of a header, followed by one (or more) commands. For this example we have:

\textbf{DeltaFunctionFile}:
This is called, for example, \texttt{Delta.m} and is written as follows.

\begin{verbatim}
function v = Delta(u, x, t)
v = u;
\end{verbatim}

\textbf{InstantaneousCostFunctionFile}:
This is called \texttt{Cost.m} and is written as follows.

\begin{verbatim}
function v = Cost(u, x, t)
v = (u^2 + x^2) / 2;
\end{verbatim}

The parameters used in \texttt{InfSOCSol} are described in Section 1.2. In this example they are specified as follows.

\texttt{StateLB} and \texttt{StateUB}: For this one-dimensional Linear-Quadratic problem we give 0 and 0.5 respectively. This is because it is anticipated that the state value will diminish monotonically from 0.5 to a small positive value. Consequently values smaller or larger than these are unnecessary.

\texttt{StateStep}: This is given a value of 0.01, making the discrete state space the set \{0, 0.01, 0.02, ..., 0.49, 0.5\}.

\texttt{TimeStep}: Given by the \texttt{scalar} 0.02.

\texttt{DiscountRate}: This is given a value of 0.9.

\texttt{ProblemFile}: This is the name for the files that the results are to be stored in, say \texttt{TestProblem}.

\texttt{Options}: In this example it is not necessary to include this vector: the default of \{ \} suffices.
A, b, Aeq and beq: As there are no linear constraints, these are all passed as empty: [].

ControlLB and ControlUB: As the control variable is unbounded, these are passed as \(-\text{Inf}\) and \(\text{Inf}\) respectively.

UserConstraintFunctionFile: As there are no constraints requiring the use of this argument, it too is passed as empty: [].

A.2. Solution Syntax. Consequently InfSOCSol could be called in MATLAB® as follows:

\[
\text{InfSOCSol}(\text{`Delta' }, \text{`Cost' }, 0, 0.5, 0.01, 0.02, 0.9, \\
\text{`TestProblem'}, \{ \}, [], [], [], [], \text{−Inf, Inf, []});
\]

TestProblem is just the header part (without the .DPS and .DPP extensions) of the two results files saved by InfSOCSol and stored for later use (see Section 3, for example).

While the call above is clear for such a simple problem, it is preferable to write MATLAB® scripts for more involved problems. For this example, a script could be written as follows.

\[
\begin{align*}
\text{StateLB} &= 0; \\
\text{StateUB} &= 0.5; \\
\text{StateStep} &= 0.01; \\
\text{TimeStep} &= 0.02; \\
\text{DiscountRate} &= 0.9; \\
\text{Options} &= \{ \}; \\
A &= []; \\
b &= []; \\
Aeq &= []; \\
beq &= []; \\
\text{ControlLB} &= \text{−Inf}; \\
\text{ControlUB} &= \text{Inf}; \\
\text{Constraint} &= []; \\
\text{InfSOCSol}(\text{`Delta' }, \text{`Cost' }, \text{StateLB}, \text{StateUB}, \text{StateStep}, \\
\text{TimeStep}, \text{DiscountRate}, \text{`TestProblem'}, \text{Options}, A, b, \\
Aeq, beq, \text{ControlLB, ControlUB, Constraint});
\end{align*}
\]

If this script were called work_space.m and placed in a directory visible to the MATLAB® path, it would then only be necessary to call work_space in MATLAB®.

In each case, the .m extensions are excluded from the filenames.

A.3. Retrieving Results Syntax. The results are communicated by means of three types of figures: control versus state policy rules, state and control timepaths, and value graphs.

A.3.1. Control vs. state. The MATLAB® routine InfContRule is used to obtain a graph of the control rule from InfSOCSol’s solution. The following values are specified for the parameters described in Section 2.2.
ProblemFile: As above, this is: ‘TestProblem’.

InitialCondition: As there is no need to hold a varying variable fixed, this condition does not matter in a one-dimensional example, where we only have one state variable (namely IndependentVariable) to vary. Consequently, this is set arbitrarily to 0.5.

IndependentVariable: This is set to 1, as there is only one state variable to vary. If this example had more than one state dimension, IndependentVariable could be any natural number between 1 and \(d \) (inclusive), depending on which dimension/variable was to be varied.

LineSpec: This is left unspecified, assuming its default of ‘r-’.

Consequently InfContRule is called as follows.

```
InfContRule(‘TestProblem’, 0.5, 1)
```

This produces the red line in the graph of control rules shown in Figure 1 below.

![Graph of control rules](image)

Figure 1. Optimal and approximated control rules.

Note that in this graph the optimal solution is presented as a dashed line, while our computed control rules are presented as solid lines. This convention is followed for subsequent graphs. The blue line is obtained on setting StateStep and TimeStep to 0.1 and 0.2 respectively.

A.3.2. State and control vs. time. The files TestProblem.DPP and TestProblem.DPS are used to derive a continuous-time, continuous-state control rule. The system is then simulated using this rule. We use the MATLAB® routine InfSim with the following values for the parameters and functions described in Section 3.3.

ProblemFile: This is ‘TestProblem’ as before.

InitialCondition: As the simulation starts at \(x_0 = 0.5 \), this is specified as 0.5.
SimulationTimeStep: For 10000 equidistant time steps each of size 0.01 this can be specified as ones(1,10000)/1000. This determines a horizon of length 10. In order to obtain a good approximation for the problem, it is necessary to choose a horizon for which the system has effectively become stationary and costless. The flattening of the timepaths in Figure 2 indicates that 10 is sufficiently large in this case.

NumberOfSimulations, LineSpec and UserSuppliedNoise: These are not passed, as the default values suffice.

Consequently InfSim is called as follows.

\[
\text{SimulatedValue} = \text{InfSim}(\text{'TestProblem'}, 0.5, \text{ones}(1,10000)/1000)
\]

SimulatedValue gives the simulated value of the performance criterion. This is 0.08090 (4 s.f.) with the choice of parameters given here, which compares favourably with the actual performance criterion

\[
\min_u J(u, \frac{1}{2}) = \frac{5}{18 + 2\sqrt{481}} = 0.08082 \quad \text{(4 s.f.)}
\]

InfSim also produces the red lines in the graphs of timepaths shown in Figure 2 below.

![Figure 2. Optimal and approximated trajectories.](image)

A.3.3. Value vs. state. Finally, the MATLAB® routine InfValGraph computes the expected value of the performance criterion for the continuous system as the initial conditions vary. This routine has the following values for the parameters described in Section 4.2.

ProblemFile, InitialCondition and VariableOfInterest: These are given the same values as the corresponding arguments in Section A.3.2 above.
VariableOfInterestValues: This vector determines for what values of the variable of interest the performance criterion should be calculated. In this example, 0:0.05:1 is used.

SimulationTimeStep: For 10000 equidistant time steps each of size 0.1 this can be specified as ones(1,10000)/1000.

NumberOfSimulations and **ScaleFactor**: These are not passed, as the default values suffice.

Hence InfValGraph is called as follows.

```matlab
InfValGraph('ProblemFile', 0.5, 1, 0:0.05:1, ones(1,10000)/1000)
```

This produces the graph shown in Figure 3 below.

![Graph](image)

Figure 3. Optimal and approximated value functions.

References

