Open Access Te Herenga Waka-Victoria University of Wellington
Browse
thesis_access.pdf (17.09 MB)

Nuclear Structure Investigations of some Medium-Weight Isotopes

Download (17.09 MB)
thesis
posted on 2021-11-08, 00:00 authored by Wallace, Gavin

This thesis describes the methods and results of investigations made to determine the decay schemes of three short-lived isotopes 112Ag, 114Ag and 116Ag. A total of 76 gamma-rays was observed with a Ge(Li) detector in the gamma-radiation which follows the Beta-decay of 112Ag to levels of 112Cd. gamma- gamma coincidence and angular correlation measurements were made with Ge(Li)-NaI(T1) and NaI(T1)-NaI(T1) systems. A decay scheme consistent with the present data is proposed. Cross sections for the reactions 112Cd(n,p)112Ag and 115In(n, alpha)112Ag were measured, and the half-life of the 112Ag decay was found to be 3.14 plus-minus 0.01 hr. The decay scheme of 114Ag was studied with Ge(Li) gamma-ray detectors and plastic Beta-ray detectors. 9 of the 11 gamma-rays observed in the decay were incorporated into 114Cd level structure previously determined by conversion electron measurements on the 113Cd(n,gamma)114Cd reaction. The endpoint energy of the Beta-decay was determined as 4.90 plus-minus 0.26 MeV; no branching was evident in the Beta-spectrum. A decay scheme is proposed for which the Beta-branching was deduced from the measured gamma-ray yield and a calculated cross section value for the 114Cd(n,p)114Ag reaction. The 114Ag half-life was determined as 4.52 plus-minus 0.03 sec; a search for a previously reported isomeric state of 114Ag was unsuccessful. Ge(Li) and NaI(T1) gamma-ray detectors were used to study the direct and coincidence spectra that result from the decay of 116Ag, the half-life of which was found to be 2.50 plus-minus 0.02 min. 53 gamma-rays were observed from this decay. The Beta-branching to the 17 excited states of 116Cd in the proposed decay scheme was derived from the measured gamma-ray yield and a calculated cross section value for the 116Cd(n,p)Ag reaction. Spin and parity assignments for ihe energy levels of 116Cd are made. An investigation of the applicability of two collective models to nuclear structure typical of the Cd nuclei studied demonstrated that one of the models was misleading when applied to vibrational nuclei. A potential function was developed in the other model to extend the investigation to include a study of the transition between extremes of collective motion. This was used to examine the correspondence between nuclear level schemes representative of rotational and vibrational excitations.

History

Copyright Date

1971-01-01

Date of Award

1971-01-01

Publisher

Te Herenga Waka—Victoria University of Wellington

Rights License

Author Retains Copyright

Degree Discipline

Physics

Degree Grantor

Te Herenga Waka—Victoria University of Wellington

Degree Level

Doctoral

Degree Name

Doctor of Philosophy

Victoria University of Wellington Item Type

Awarded Doctoral Thesis

Language

en_NZ

Victoria University of Wellington School

School of Chemical and Physical Sciences

Advisors

Chapman, N G; Freeman, R M; Rafter, T A; Walker, D