Open Access Te Herenga Waka-Victoria University of Wellington
Browse
thesis_access.pdf (39.07 MB)

Electron Microscopy of Bubbles and Dislocations in Helium Implanted Metals

Download (39.07 MB)
thesis
posted on 2021-11-08, 00:27 authored by Stevens, Kevin John

The theoretical contrast in transmission electron microscope of a superlattice of helium gas bubbles in copper is computed using the two-beam and many-beam dynamical theories of electron diffraction with the aim the aim of measuring the density and size of dislocation loops associated with the bubble array. A wide range of parameters (foil thickness, diffraction vector, excitation error, defocus, and depth, radius, and strain-field of the bubble) is considered to considered to construct a library of theoretical images and intensity profiles for a single, isolated bubble. Various criteria are applied to obtain a measurement of the bubble radius from the simulations but the results are inaccurate because of the sensitive dependence of the intensity profile on the imaging parameters. A better measurement is profiles from a single stack of bubbles are modeled and electron diffraction from superlattices simulated. The results obtained suggest that the bubble ordering is of limited extent. A library is made of the theoretical contrast when imaging a system of dislocation loops punched out along the <110> directions by the growth of gas bubbles ordered on a superlattice aligned with the host fcc matrix. These image simulations use the displacement fields surrounding loops and bubbles predicted by isotropic elasticity theory. For a variety of structures involving loops and bubbles, the following imaging parameters were investigated: beam direction, foil normal, diffracting vector, excitation error, number of beams, and defocus, These simulations indicate that it should be possible to image the small dislocations at high density thought to be present in the bubble lattice, provided well focused micrographs taken under strong two-beam conditions can be obtained. In Practice it proved difficult to tilt specimens containing superlattices to strong two-beam conditions because of the deterioration in crystallinity resulting from the implantation. However, the lower concentrations by low dose implantations.

History

Copyright Date

1993-01-01

Date of Award

1993-01-01

Publisher

Te Herenga Waka—Victoria University of Wellington

Rights License

Author Retains Copyright

Degree Discipline

Physics

Degree Grantor

Te Herenga Waka—Victoria University of Wellington

Degree Level

Doctoral

Degree Name

Doctor of Philosophy

Victoria University of Wellington Item Type

Awarded Doctoral Thesis

Language

en_NZ

Victoria University of Wellington School

School of Chemical and Physical Sciences

Advisors

Cook, Colin; Johnson, Peter