Open Access Te Herenga Waka-Victoria University of Wellington
Browse
thesis_access.pdf (51.41 MB)

Development of a Novel Underground Mine Reconnaissance Robot

Download (51.41 MB)
thesis
posted on 2021-12-08, 14:12 authored by Thompson, Nick

Despite advancements in safety technology, underground mining disasters kill hundreds of people each year. Typically after a disaster, a manned response team will enter the hazardous mine to ascertain its condition and rescue any survivors. A robotic entry platform could significantly reduce the risk to the response teams and the time taken to recover any survivors. However, existing mine search and rescue robots have had limited success in past disasters. Two primary aspects caused the failure of the existing platforms; poor rough terrain ability and lack of ingress protection for the harsh mine environment.  HADES, a novel underground mine reconnaissance robot is developed to address these issues. A lightweight yet robust chassis is manufactured from fibreglass. To allow HADES to operate in the potentially explosive atmosphere, the chassis is protected with a positive pressure gas system, designed to meet the ANZ60079.29 standard. This chassis is sealed against the mine environment with a series of O-rings and lip seals. Whegs are used as the primary locomotion method and are driven with a planetary gearbox and a brushless DC motor. To further improve a rough terrain capability of the locomotion system the rear arm of the chassis is mounted on an actuated pivot, increasing the rough terrain capability of HADES.  To ensure the operator can successfully assess and navigate the mine, HADES carries a comprehensive set of environmental and navigation sensors. The internal electronics and locomotion systems are powered with six Li-Po batteries that achieve an operating time of six hours and an expected range of 25 km.  HADES is 780x800x400 mm and is mostly sealed to the IP68 standard. The locomotion system is robust and can traverse the majority of the terrain expected in an underground mine. Loss of traction is the only problem encountered with the Wheg design. However, this can be easily fixed by changing the tip shape of the Wheg.

History

Copyright Date

2019-01-01

Date of Award

2019-01-01

Publisher

Te Herenga Waka—Victoria University of Wellington

Rights License

Author Retains Copyright

Degree Discipline

Electronic and Computer System Engineering

Degree Grantor

Te Herenga Waka—Victoria University of Wellington

Degree Level

Masters

Degree Name

Master of Engineering

ANZSRC Type Of Activity code

970109 Expanding Knowledge in Engineering

Victoria University of Wellington Item Type

Awarded Research Masters Thesis

Language

en_NZ

Victoria University of Wellington School

School of Engineering and Computer Science

Advisors

Carnegie, Dale