Open Access Te Herenga Waka-Victoria University of Wellington
Browse
thesis_access.pdf (8.02 MB)

ElasticWISP: Energy-Proportional WISP Backhaul Networks

Download (8.02 MB)
thesis
posted on 2021-12-09, 06:59 authored by Duncan CameronDuncan Cameron

The provision of rural broadband infrastructure is a challenge for network operators across the globe, irrespective of their size. Wireless Internet Service Providers (WISPs) have shown that the small-scale deployment of wireless broadband infrastructure is a viable alternative to relying on cellular network providers for remote coverage. However, WISPs must often resort to using off-grid renewable energy sources such as solar energy for powering network sites, often resulting in undesirable, low-performance backhaul radios being used between sites out of concern for excessive energy consumption.  The challenges of managing performant wireless backhaul networks in respect to energy constraints at remote, off-grid sites informs the need for energy-proportional design. Backhaul radios typically used by WISPs are not energy-proportional, meaning they use a consistent amount of energy, irrespective of wireless link utilisation. Using data from a real WISP network, diurnal traffic patterns show that WISP networks could benefit from energy-proportional design, without having to sacrifice performance.  To encourage the development of high-performance, energy-proportional WISP backhaul networks, ElasticWISP, an optimisation architecture that reduces network-wide backhaul energy consumption while satisfying the user-demand for traffic, is introduced. ElasticWISP dynamically controls the configuration of backhaul radios based on bandwidth demands and the network-wide energy consumption of these radios. Through simulations driven by real WISP topology and data traffic, results show that ElasticWISP can offer energy savings of approximately 65% when WISP operators follow the proposed backhaul design methodology.  Finally, a lightweight Multiprotocol Label Switching (MPLS)-based traffic engineering scheme, based on Segment Routing, is proposed. The implementation, named Segment Routing over MPLS (SR-MPLS), keeps traffic engineering path-state within each packet, meaning per-flow state is only held at SR-MPLS ingress routers. The lightweight approach of SR-MPLS also eliminates the otherwise necessary network-wide label flooding of traditional Segment Routing, making it ideal for bandwidth-sensitive wireless backhaul networks. Evaluation of SR-MPLS shows that it can perform as well as – and sometimes better than – competitor schemes.

History

Copyright Date

2020-01-01

Date of Award

2020-01-01

Publisher

Te Herenga Waka—Victoria University of Wellington

Rights License

Author Retains Copyright

Degree Discipline

Network Engineering

Degree Grantor

Te Herenga Waka—Victoria University of Wellington

Degree Level

Masters

Degree Name

Master of Engineering

Victoria University of Wellington Unit

Engineering at Victoria

ANZSRC Type Of Activity code

1 PURE BASIC RESEARCH

Victoria University of Wellington Item Type

Awarded Research Masters Thesis

Language

en_NZ

Victoria University of Wellington School

School of Engineering and Computer Science

Advisors

Valera, Alvin