Open Access Te Herenga Waka-Victoria University of Wellington
Browse
thesis_access.pdf (3.51 MB)

Matched Filtering in Massive MU-MIMO Systems

Download (3.51 MB)
thesis
posted on 2021-12-08, 14:46 authored by Shuang Li

This thesis considers the analysis of matched filtering (MF) processing in massive multi-user multiple-input-multiple-output (MU-MIMO) wireless communication systems. The main focus is the analysis of system performance for combinations of two linear processers, analog maximum ratio combining (MRC) and digital MRC. We consider implementations of these processing techniques both at a single base-station (BS) and in distributed BS layouts. We further consider extremely low complexity distributed variants of MRC for such systems. Since MRC relies on the massive MIMO properties of favourable propagation (FP) and channel hardening, we also present a detailed analysis of FP and channel hardening. This analysis employs modern ray-based models rather than classical channel models as the models are more reliable for the large arrays and higher frequencies envisaged for future systems.  The importance of MRC processing is being driven by the emergence of massive MIMO and millimetre wave as strong candidates for next generation wireless communication systems. Massive MIMO explores the spatial dimension by providing significant increases in data rate, link reliability and energy efficiency. However, with a large number of antennas co-located in a fixed physical space, correlation between the elements of antennas may have a negative impact. Distributed systems, where the total number of antennas are divided into different locations, make this problem less serious. Also, linear processing techniques, analog MRC and digital MRC, due to their simplicity and efficiency, are more practical in massive MU-MIMO systems. For these reasons we consider MRC processing in both co-located and distributed scenarios.  Although distributed systems reduce the adverse impact of correlation caused by closely-spaced large antenna arrays by dividing the antennas into multiple antenna clusters, the correlation within the cluster still exists. Thus, we extend MRC analysis for massive MIMO to correlated channels. Approximations of expected per-user spectrum efficiency (SE) with correlation effects for massive MIMO systems with analog MRC and digital MRC are derived. Useful insights are given for future system deployments. A convergence analysis of the interference behaviour under different correlation models is presented.  Furthermore, a distributed fully cooperative system, where all the received signals are sent to the central processor, offers attractive performance gains but at the cost of high computational complexity at the central node. Thus, we propose four low-complexity, two-stage processors, where only processed signals after local processing (first-stage) are transmitted to the global processing node (second-stage). We present analytical expressions for the expected per user SINR in an uplink distributed MU-MIMO system with two-stage beam-forming. This leads to an approximation of expected per-user SE.  The analysis of both millimetre wave and massive MIMO systems requires a strong link to the physical environment and ray-based models are more practical and suitable for such systems. However, it is unclear how the key properties in conventional MIMO systems, such as FP and channel hardening, will behave in a ray-based channel model. In this thesis, remarkably simple and general results are obtained demonstrating that: a) channel hardening may or may nor occur depending on the nature of the channel models; b) FP is guaranteed for all models as long as the ray angles are continuous random variables; c) we also propose a novel system metric, denoted large system potential (LSP) as the ratio of the mean desired signal power to the total mean interference power, where both the numbers of antennas and end-users are growing to infinity at a fixed ratio. We derive simple approximations to LSP and demonstrate that LSP will not normally hold as the mean interference power usually grows logarithmically relative to the mean signal power.

History

Copyright Date

2020-01-01

Date of Award

2020-01-01

Publisher

Te Herenga Waka—Victoria University of Wellington

Rights License

Author Retains Copyright

Degree Discipline

Engineering

Degree Grantor

Te Herenga Waka—Victoria University of Wellington

Degree Level

Doctoral

Degree Name

Doctor of Philosophy

ANZSRC Type Of Activity code

1 PURE BASIC RESEARCH

Victoria University of Wellington Item Type

Awarded Doctoral Thesis

Language

en_NZ

Victoria University of Wellington School

School of Engineering and Computer Science

Advisors

Dmochowski, Pawel; Smith, Peter