Aligned Nanorods of AlPO$_4$-5
Within the Pores of Anodic Alumina

by

L. J. King

A thesis
submitted to Victoria University of Wellington
in partial fulfilment of the requirements for the degree of Master of Science with Honours in Chemistry.

Victoria University of Wellington
2010
Abstract

Anodic aluminium oxide has been identified as a versatile porous template material having high pore density, (up to 10^{10} cm$^{-2}$), controllable channel length and monodisperse pore diameter within the range 20-250 nm. A number of studies have demonstrated the concept of utilizing the porous structure for directing the growth of various nanostructures. An example of this is the growth of crystals of the aluminophosphate AlPO$_4$-5 within the anodic nanochannels. The high aspect ratio of the template pores encourages growth of the crystals in the preferred c-axis orientation. We have produced membranes of this material and investigated the degree of crystal alignment using X-ray diffraction. The relative degree of preferred orientation is over 200 for a typical membrane. Field emission SEM micrographs clearly show the aligned crystals within the pores. The inclusion of luminescent guest molecules within the pores of the zeolite has also been achieved. This work describes the synthesis, characterization and potential application of these membranes.
Acknowledgments

Firstly, thanks of a technical nature. Thanks to Andrew Kay, IRL, for supplying the laser dyes used in this research, to Murray Presland, IRL for design input for the microwave autoclave and temperature controller, to Sebastiampillai Raymond, IRL, for fluorescence spectra and to David Flynn, Victoria University, for SEM studies.

Many thanks to my my supervisors, Tim Kemmitt, who was always there to share a chat about the antics of our respective children or misbehaving membranes, and to Ken Mackenzie, my Victoria University supervisor. Thank you both for sticking with me through this long process.

Thanks to my parents and step-parents for all your love and support.

Special Thanks to my husband Tom, for advice and support of a technical nature, and for being the love of my life.

Thanks to Bethany and Sabina, my gorgeous children, who are my bliss.
Contents

1 Introduction 9

1.1 Nanomaterials ... 9
1.2 Porous Anodic Alumina 11
1.3 Zeolites ... 13
 1.3.1 Applications of Zeolites 16
 1.3.2 Zeolite Membranes 18
1.4 Aluminophosphates 19
1.5 AlPO₄-5 ... 20
 1.5.1 Structure .. 20
 1.5.2 Synthesis .. 21
 1.5.3 Applications ... 23
 1.5.4 AlPO₄-5 Membranes 24
 1.5.5 AlPO₄-5 as a host for other materials 26
 1.5.6 Microlaser Introduction 27
 1.5.7 AlPO₄-5/dye Microlasers 28
1.6 Project Aims/Summary 30

2 Materials And Methods 33

2.1 Introduction .. 33
2.2 Materials .. 33
2.2.1 Reagents ... 33
2.2.2 Porous Anodic Alumina 34
2.2.3 Equipment .. 36
2.3 Preparation ... 36
2.3.1 Conventional Hydrothermal Synthesis of bulk AlPO$_4$-5 37
2.3.2 AlPO$_4$-5 within the pores of PAA - Conventional Hydrothermal Synthesis 37
2.3.3 AlPO$_4$-5 Within the Pores of PAA - Attempts to Dope AlPO$_4$-5 with Laser Dyes during Conventional Oven Synthesis .. 39
2.3.4 AlPO$_4$-5 Within the Pores of PAA - Microwave Synthesis .. 43
2.3.5 AlPO$_4$-5 Within the Pores of PAA doped with DCM - Microwave Synthesis 43
2.4 Template Removal 44
2.5 Analysis .. 44
2.5.1 Scanning Electron Microscopy 44
2.5.2 X-Ray Diffraction 45
2.5.3 Fluorescence Spectra 45

3 Conventional Oven Synthesis of AlPO$_4$-5 within PAA 47
3.1 Introduction .. 47
3.2 Synthesis .. 48
3.3 Crystallisation within Anodisc PAA membranes 52
3.3.1 XRD .. 52
CONTENTS

3.3.2 SEM .. 54
3.4 Crystallisation within Highly Periodic PAA 57
 3.4.1 XRD .. 57
 3.4.2 SEM .. 59
3.5 Template Removal .. 61
 3.5.1 Introduction .. 61
 3.5.2 XRD .. 63
 3.5.3 SEM .. 65
3.6 Discussion .. 66

4 Microwave Crystallisation of AlPO₄-5 doped with DCM within
 Porous Anodic Alumina .. 69
 4.1 Introduction .. 69
 4.2 Initial Microwave Synthesis 71
 4.2.1 XRD of AlPO₄-5 prepared in the Microwave 71
 4.3 Synthesis of DCM@AlPO₄-5 73
 4.3.1 Introduction .. 73
 4.3.2 Synthesis ... 74
 4.3.3 XRD .. 74
 4.3.4 SEM .. 76
 4.3.5 Luminescence Measurements 77
 4.3.5.1 Photographs 79
 4.3.5.2 Spectra ... 79
 4.3.6 Procedure for determining incorporation of DCM into
 composite AlPO₄-5/dye membranes 80
 4.4 Discussion .. 82
5 Conclusions and Future Work 83
 5.1 Recommendations for Future Work 85

A Microwave-Safe Pressure Vessel 87

B Summary of all samples made. 91

C Methods used for Template Removal from Zeolites 109

D Alphabond 300 Materials Safety Data Sheet 111

References 118
List of Figures

1.1 Idealized structure of Porous Anodic Aluminium Oxide. . . 13

1.2 A side view of the highly ordered periodic porous anodic alumina used in this work at 33000 magnification. 14

1.3 The zeolite ZSM-5 showing the pores along which molecular sieving is achieved. 15

1.4 A schematic showing the role of NaA in water softening. . . 17

1.5 AFI viewed along the 001 axis. 21

1.6 AFI viewed channel normal to the 001 axis. 22

1.7 The powder XRD pattern of the zeolite AFI, taken from the website of the International Zeolite Association. 23

1.9 AlPO₄-5/laser dye composites fluorescing under UV. . . . 32

2.1 Commercially prepared Whatman Anodisc membrane (left) compared with PAA made by locally (right). 35

2.2 A Whatman Anodisc membrane (left) next to the Teflon ring (right) used in this synthesis. 38
2.3 A Whatman anodisc membrane floating on the surface of water in a glass beaker, demonstrating how the Teflon ring is used during the synthesis. .. 39

3.1 XRD trace for a membrane made via the method in section 2.3.2 using a Whatman anodisc. 54

3.2 XRD trace for a membrane made via the method in section 2.3.2 using a highly ordered, periodic PAA membrane. 55

3.3 A broken edge of an AlPO$_4$-5 membrane at 20000 magnification, showing crystal growth as it appears at the surface of the membrane. .. 56

3.4 The surface of an AlPO$_4$-5 membrane at 800 times magnification. ... 57

3.5 The surface of an AlPO$_4$-5 membrane at 8000 times magnification. ... 58

3.6 XRD trace for a membrane made via the method in section 2.3.2 using highly ordered, periodic PAA 59

3.7 XRD trace for another membrane made via the method in section 2.3.2 using highly ordered, periodic PAA. 60

3.8 A broken edge of an AlPO$_4$-5 membrane at 43000 magnification, showing AlPO$_4$-5 crystals growing out of the pores of the PAA membrane. The crystals join on the surface to form a continuous layer. .. 61
LIST OF FIGURES

3.9 Another view of a broken edge of the AlPO₄-5 membrane at 45000 magnification. In this view the crystalline nature of the AlPO₄-5 within the membrane pores can be more clearly seen.

3.10 The surface of an AlPO₄-5 membrane at 300 times magnification.

3.11 The surface of an AlPO₄-5 membrane at 3000 times magnification, showing the hexagonal plate structure of the top face of the membrane.

3.12 A comparison of the XRD traces of an AlPO₄-5 membrane pre-and-post template removal via the method discussed in 3.5.1.

3.13 SEM of the top face of an AlPO₄-5 composite membrane after vacuum template removal.

4.1 XRD trace for a membrane made via the method in section 2.3.4 using a Whatman anodisc.

4.2 The laser dye DCM (4-dicyanomethylene-2- methyl - 6 - (p(dimethylamino)styryl)-4H-pyran).

4.3 An XRD trace for a composite membrane made via the method in 2.3.5 with the laser dye DCM incorporated into the membrane during crystallisation.

4.4 DCM/AlPO₄-5 membrane at 2300 magnification.

4.5 SEM image of a broken edge of a DCM/AlPO₄-5 membrane at 3700 magnification.
4.6 A view of the surface of a DCM/AlPO$_4$-5 membrane at 2500 magnification. 78

4.7 An undoped composite membrane (left) next to a composite membrane doped with DCM fluorescing under UV (right). 79

4.8 Emission Spectrum for a DCM/AlPO$_4$-5 composite membrane at 298 K and $\lambda_{\text{exc}} = 489$ nm. 80

4.9 Emission Spectra of DCM in various solvents, temperatures and wavelengths from Bondarev et al. Spectrum 4 shows DCM in n-propanol at 298 K and $\lambda_{\text{exc}} = 450$ nm. 81

A.1 Photograph of the Microwave-safe pressure vessel. 89
List of Tables

2.1 Chemicals used and their respective purities and manufacturers. .. 34

2.2 Comparison of Whatman Anodisc membrane filters and highly ordered periodic PAA. 35

2.3 Laser dyes trialed during conventional oven syntheses, and the results of these syntheses. 41

2.3 Continued. .. 42

B.1 Samples made during the design of a synthesis for AlPO_4-5 membranes using a conventional oven as the heating source. 92

B.1 Continued .. 93

B.1 Continued .. 94

B.2 Attempts to synthesise AlPO_4-5 microlaser membranes using conventional oven heating. 96

B.3 Attempts to dope AlPO_4-5 membranes with europium. ... 97

B.4 AlPO_4-5 membranes prepared on highly ordered PAA. ... 99

B.5 AlPO_4-5 membranes using a microwave as the heating source. 101

B.6 Microwave samples doped with DCM. 102
B.7 Samples prepared to check whether DCM was incorporated into the membranes in Table B.6. 103
B.8 Europium doped microwave samples. 104
B.9 Attempts to synthesise small pore Alpo$_4$-5. 106
B.9 Continued ... 107
List of Abbreviations

\(\mu m \)
micrometre

Å
Angstrom

AFI
Aluminophosphate 5, also referred to as AlPO\(_4\)-5

AIPO\(_4\)-5
Aluminophosphate 5, also referred to by the three letter code AFI

BEA
the Zeolite Beta

CHA
The zeolite chabazite

cm
Centimetre

DCM
4-dicyanomethylene-2-methyl-6-(p(dimethylamino)styryl)-4H-pyran

DDR
the zeolite Deca-dodecasil 3R

EDS
Energy dispersive spectroscopy

FAU
The zeolite Faujasite

FER
The zeolite Ferrierite

IRL
Industrial Research Limited

LTA
The zeolite with the Linde Type A framework type

MAPO\(_4\)-5
AlPO\(_4\)-5 in which some of the aluminium in the framework has been replaced by other metal ions

MEL
The Zeolite ZSM-11

MFI
This abbreviation refers to ‘mobil composition of matter 5’ and refers to the aluminosilicate ZSM-5, which was patented by Mobil Oil Company

MOR
The zeolite Mordenite

NaA
The Linde type A sodium form of zeolite A

nm
Nanometre
PAA Porous Anodic Alumina
SAPO$_4$-34 the aluminophosphate 34, in which some of the aluminium in the framework has been replaced by silicon
PEEK polyetheretherketone, an engineering plastic
PTFE Polytetrafluoroethylene, more commonly known as Teflon
SEM Scanning Electron Microscopy
SHG Second harmonic generation, a nonlinear optical process, in which photons interacting with a nonlinear material are effectively ”combined” to form new photons with twice the energy, and therefore twice the frequency and half the wavelength of the initial photons.
UV Ultraviolet light
XRD X-ray diffraction
ZSM-5 an aluminosilicate with the structural type MFI
Chapter 1

Introduction

1.1 Nanomaterials

Nanotechnology is the engineering of functional systems at the molecular scale. Generally, nanotechnology deals with structures of the size 100 nanometres or smaller, and involves developing novel materials or molecular devices within that size range. Nanotechnology is very diverse, ranging from extensions of conventional synthetic techniques and macro-scale materials, to completely new approaches based upon molecular self-assembly, to developing new materials with dimensions on the nanoscale. The field of nanotechnology has the potential to create new materials that are not only faster, cleaner and cheaper to produce than conventional materials, but also display novel properties not available on the macro-scale [1].

A number of physical phenomena become pronounced as the size of the system decreases. These include statistical mechanical effects, as well as quantum mechanical effects, for example the quantum size effect where
the electronic properties of solids are altered as particle size decreases into
the nano region [2, p.23]. This effect does not come into play by going
from macro to micro dimensions, however, it becomes dominant when
the nanometer size range is reached. Additionally, a number of physical
(mechanical, electrical, optical, etc.) properties change when compared to
macroscopic systems. One example is the increase in the ratio of surface
area to volume, altering mechanical, thermal and catalytic properties of
materials [2, p.29]. Nanotechnology exploits these phenomena to create
materials with startlingly different properties to their macro scale counter-
parts.

This project seeks to investigate the potential of forming aligned nano-
 crystallites with specific properties in order to access functionality not
available at larger scales. The project examines two functionalities de-
rived from the use of zeolitic crystal, both resulting from the presence of
open channels through the zeolite crystal structure. The first is the use
of aligned arrays of the crystals arranged on the macro scale to act as a
size exclusion molecular filter. The second function is to use the channels
as cages in which to trap functional molecules, (in this case a 2nd order
non-linear photonic molecule) in order to provide a macro scale material
containing fully aligned molecules. As most zeolites form crystalline pow-
ders rather than films or membranes, it is necessary to utilise a template
to produce crystallographically aligned arrays of zeolite crystals. In order
to force this alignment a porous anodic alumina membrane is used as the
template, the pores of which orient the zeolite crystals with their c-axis
perpendicular to the membrane surface.
1.2 Porous Anodic Alumina

In recent years, nanoporous porous anodic alumina (PAA) membranes have become popular and attractive materials for a diverse range of applications including molecular separation [3], catalysis [4], drug delivery [5], biosensing [3], and template synthesis [6] [7]. This profound interest is due to the salient features of this nanostructured material. Firstly, PAA membranes can be easily fabricated with monodisperse, geometrically regular and self-organised pore diameters within the range 20-250 nm. Furthermore, such membranes have a high surface area ($180-250 \text{ m}^2\text{g}^{-1}$), high pore density, (up to 10^{10} cm^{-2}), controllable channel length, and are robust and biocompatible.

A number of studies have demonstrated the concept of utilizing PAA as a template for directing the growth of various nanostructures. Various composite materials with metals have been reported, including platinum [8] or palladium [9] membranes supported on PAA, composites of PAA with nanogold [10] and zinc, cobalt or iron nanotubes within PAA [11]. Other nanotube composites include carbon nanotubes grown within PAA [12] and nanocarbon networks [13]. Composites have also been made with the ionic conductor AgI within PAA [14]. These materials show an enhancement in conductivity over AgI powders. Composites of PAA with photoluminescent materials including liquid crystalline azo dyes [15], photoluminescent polymers [16] and Tb$^{3+}$ [17] show the diverse range of materials that can be supported on or contained within PAA.

Several different ceramic-based composites have also been reported, including aluminium titanate/PAA composites [18], zirconia-zircon com-
posites with PAA [19] and the zeolites MFI [20, 21, 22, 23, 24, 25, 26], FAU [23, 27] and the aluminophosphate AFI [28, 29], also known as AlPO₄-5, which is discussed in this work. The naming schemes for zeolites and aluminophosphates from which these three letter codes are derived can be found in sections 1.3 and 1.4, and further detail on zeolite and aluminophosphates membranes is found in sections 1.3.2 and 1.5.4. This list shows the extreme versatility of PAA as a support for or template to direct the growth of different composite materials.

Porous anodic alumina is made by anodizing pure aluminium foil in an acidic electrolyte (typically, dilute solutions of various acids - sulfuric, phosphoric or oxalic for example - are used) [30]. The anode of the electrochemical cell is composed of aluminium while the cathode is an inert conductor such as carbon or platinum. The aluminium is oxidized to give a film of alumina, which grows in a hexagonal porous structure (see Fig 1.1), due to the preferential growth of oxide in nanosized pits on the surface of the aluminium, which are a result of polishing the aluminium foil. These pits grow into cells of alumina, each with a central pore [31].

The size of these pores and their interpore distance is dependant on the electrolyte used [30], and is approx 50 nm for the locally made anodic alumina membranes used in this study, which are shown in Fig 1.2. The residual Aluminium metal is removed and the ends of the pores are opened by immersion in an acidic solution [32].

Although anodizing highly pure aluminium can produce regular periodic arrays of pores, less regular porous alumina discs with pore diameters of 100 - 200 nm are commercially produced for microfiltration applica-
1.3 Zeolites

Zeolites are a class of microporous molecular sieve based mostly on porous aluminosilicates, but also encompass a wider range of materials including the aluminophosphates, which are studied in this work. The name zeolite (from zea, "to boil"; lithos, "a stone" [33]) was bestowed by the
Swedish mineralogist Axel Fredrik Cronstedt. In 1756 he discovered a zeolite now widely used for water softening, upon observation that when heated rapidly, the stones began to dance about as the water evaporated [34].

Zeolites are three-dimensional, crystalline compounds with an open porous framework structure composed of alternating AlO$_4$ and SiO$_4$ tetrahedra [35]. According to the diameter of the largest pore, porous materials can be classified as microporous (aperture diameter of less than 2 nm), mesoporous (aperture diameter of 2-50 nm) or macroporous (aperture diameter of greater than 50 nm) [36]. The pore diameters for zeolites are generally in the microporous region, of the order of 0.5 to 1.5 nm.

The basic zeolite formula is $M_{2/n}O.Al_2O_3.xSiO_2.yH_2O$, with M defining the compensating cation, valence n indicating the ratio of atoms of Si:Al and y indicating the ratio of H$_2$O:Al [37]. A number of different cations
can provide the counter charge. An example of a common zeolite (ZSM-5) is shown in figure 1.3.

Zeolites are synthesised hydrothermally, from an aqueous solution of the aluminate, silicate and a template around which the porous framework is formed. The precise zeolite formed during synthesis is dependent on the reactants and synthetic conditions used. Zeolites are categorized by their framework type and as of July 2009, 179 unique zeolite frameworks have been identified [39].

Zeolite framework types are categorized by a unique 3 letter identifi-
cation code, which is designated according to the laboratory in which it was synthesised, and the order in which it was discovered. This can be a confusing scheme for researchers to follow as it is in no way descriptive of the structure of the zeolite in question. For example the zeolite ZSM-5 was so named because it was discovered by the researchers at Zeolite Secony Mobil, and was the 5th such zeolite to be discovered. It is given the three letter code MFI, the M refers to Mobil, and the letters FI refers to the first two letters in the number five.

1.3.1 Applications of Zeolites

Over the past few decades, interest in zeolites has increased due to their many potential applications in catalysis, molecular sieving, separations and water purification. Zeolites have many interesting properties. They are able to act as catalysts for various reactions which take place within their cavities [40, p.327-328]. Their very regular pore structure allows them to behave as molecular sieves, to selectively sort molecules based primarily on a size exclusion process, and furthermore, the cations which provide counter charge in zeolites are labile, and can undergo ion exchange with other cations [40, p.81].

One of the most important uses of zeolites is in catalysis, for the cracking of heavier petroleum fractions into their lighter and more valuable constituents. The zeolite holds the long alkyl chain molecules within its pores, and acidic sites help break them into smaller chains [40, p.388]. After introduction of metal ions (e.g. titanium or copper) into the framework, zeolites can also function as oxidation or reduction catalysts [40,
Zeolites are extensively used in the separation of gases and liquids, both by simple size exclusion, based on the pore sizes relative to the material to be separated, and by the speed with which molecules of different polarity diffuse through the pores.

The ability of zeolites to ion exchange leads to application in water purification, both for domestic and commercial uses. Zeolites are extensively used in water softening, by removing Ca^{2+} and Mg^{2+}, which form insoluble deposits and precipitates with soap [41]. An example of this is the use of zeolite A, as shown in Figure 1.4. The sodium ions in the framework are replaced by the hard ions Mg^{2+} and Ca^{2+}. When the zeolite has become saturated with hard ions it can be regenerated by passing a saturated solution of NaCl through it, exchanging Na^+ for Mg^{2+} and Ca^{2+}.

![Figure 1.4: A schematic showing the role of NaA in water softening [42].](image)

An important environmental application of zeolites which exploits their ability to ion exchange is in the processing of commercial waste water streams where zeolites can be used to remove heavy metals or radioactive residues from the waste stream [43].
1.3.2 Zeolite Membranes

Many of the separative applications of zeolites rely on the use of their non-linear porosity, where pores pass through only one crystal plane. This can only be fully utilized if the orientation of the zeolite crystals can be controlled relative to the material to be separated. As most zeolites form crystalline powders, a support or template is needed in order to manufacture zeolite films and membranes. Zeolite films and membranes promise far superior performance to their conventional polymeric counterparts, due to their relative thermal and chemical stability, and tunable, nanometer sized pores.

Membranes composed of a zeolite layer on a support material have the potential to replace energy-intensive thermally driven separation processes with membrane based ones, which can provide a reduction in energy usage of up to an order of magnitude [44]. Different types of zeolite membrane that have been reported include LTA [45, 46, 47, 48, 49], FAU [50, 51, 52, 53], MOR [54, 55], FER [56], MEL [57], CHA [58], SAPO-34 [59, 60, 61, 62], DDR [63], and AFI [64, 65, 29, 48, 21, 28].

Potential applications of zeolites membranes include separative processes such as the de-watering of ethanol by LTA membranes [66, 67, 68, 69], for which a pilot plant is in operation. These membranes have a separation factor (water/ethanol) of 10,000 for 90 wt% ethanol solution. Zeolite membranes have also been use in hydrogen separation, carbon dioxide separation and separation of xylene isomers [44].

Another novel application of zeolites films and membranes is their use in reactors to enhance a particular chemical reaction. There are numerous
1.4 Aluminophosphates

examples of their use in membrane reactors by equilibrium displacement or by selectively removing reaction rate inhibitors [70]. In addition to these applications zeolite membranes may be used in chemical sensors, as electrodes, as opto-electronic devices or low dielectric constant materials, as protective or insulating layers, as corrosion-resistant coatings [71] or as hydrophilic antimicrobial coatings [72]. Sulfonated zeolite BEA may also be used for proton exchange [73].

Although there has been much research in the field of zeolite membranes over the last decade this technology is very much in its infancy, and there are only a few pilot plants in operation. Initial successes however mean that many more are planned. The range of possible applications has also increased greatly over the past few years with the possibility of generating new structures via inclusion of guest molecules into the pores of the zeolite.

1.4 Aluminophosphates

It has been more than 25 years since the first reported synthesis of aluminophosphates by Wilson and Flanigan [74]. Before that time the field of zeolites was restricted to those containing silica [75]. The work of Wilson and Flanigan in reporting on the aluminophosphate molecular sieves opened the field to a whole new variety of different zeolite based materials.

More than 53 different aluminophosphate structures have now been synthesised, with 18 analogues of natural or synthetic zeolites [39]. Their naming scheme, though somewhat less confusing than that of the silica
based zeolites, still makes no reference to the structure of the material. Each aluminophosphate has a three letter code, the first letter of which is A (for aluminophosphate), and the second two letters of which refer to the order in which it was discovered. For example AlPO$_4$-18 is given the three letter code AEI, for Aluminophosphate Eighteen.

The aluminophosphates are mostly microporous molecular sieves with pores with diameters ranging from 4 to 12 depending on the structure [76], which are used for many of the same applications as the original silica based zeolites. The subject of the present study is AlPO$_4$-5, a medium pore size (0.78 nm) aluminophosphate, which is one of the more widely studied in the field. It is referred to by the three letter code AFI, for Aluminophosphate Five.

1.5 AlPO$_4$-5

1.5.1 Structure

AlPO$_4$-5 has a hexagonal open framework structure with $a=13.827$ Å, $b=13.827$ Å, $c=8.580$ Å and $\alpha = 90^\circ$, $\beta = 90^\circ$, $\gamma = 120^\circ$. The structure is composed of alternating alumina and phosphate tetrahedra with the main porosity along the [001] plane as seen in Figures 1.5 and 1.6. The pore size of AlPO$_4$-5 is 7.3 Å. The space group is P6/mcc (mass centred cubic), and the largest ring size is 12 atoms. Bulk AlPO$_4$-5 has the powder X-ray diffraction pattern shown in Fig. 1.7, which is taken from the database of zeolite structures at the International Zeolite Association [39].
1.5.1 \(\text{AlPO}_4-5 \)

Figure 1.5: AFI viewed along the 001 axis [77].

1.5.2 Synthesis

\(\text{AlPO}_4-5 \) is usually synthesised hydrothermally from a solution of the aluminium source and phosphoric acid, with an amine structure directing agent [78]. A number of different amine structure directing agents can be used. One of the commonly used organic templating molecules is triethyamine (TEA), which is used in the syntheses discussed in chapters three and four.

Other commonly used templating molecules include tetrapropylammonium hydroxide and tripropylamine.

Various aluminium sources may also be employed, the most common of which are pseudoboehmite and aluminium isopropoxide, although many others have been used. The original synthesis proposed by Wilson and
Flanigen over 20 years ago used an aqueous slurry of orthophosphoric acid and pseudoboehmite, with tetrapropylammonium hydroxide as the templating agent. This synthesis involved a slow crystallisation at 150 °C over a period of 43 hours [74]. Guth et al. introduced the use of HF as a mineraliser in 1986 [79], which, combined with the introduction of microwave heating [80, 81] greatly reduced the crystallisation time needed. Advantages of microwave heating include speed, increased phase purity, narrow particle size distribution and the fact that heating is not disturbed by convection [75]. A typical microwave synthesis involves a crystallisation time of between 10 and 30 minutes and may be as short as 60 seconds [82, 83].
1.5.3 Applications

The two main applications for which AlPO$_4$-5 has historically been studied are catalysis and molecular sieving [74]. MAPO$_4$-5 (AlPO$_4$-5 in which other metal ions have been introduced into the framework) has been demonstrated to be a recyclable catalyst for various oxidation reactions of alkanes, cycloalkanes or phenols [84]. Examples of this include the use of Fe-AlPO$_4$-5 for the oxidation of cyclohexane [85], Cr-AlPO$_4$-5 for the autoxidation of cyclohexane, tetralin, indane and ethylbenzene [86], Cr-AlPO$_4$-5 synthesised from aluminium dross (a byproduct of aluminium smelting) for the liquid phase oxidation of tetralin [52], Mn, Zn, Co and Mg substituted AlPO$_4$-5 for the dehydration and dehydrogenation of cyclohexanol [87] and Co-AlPO$_4$-5 for oxidation of cyclohexane [88].

AlPO$_4$-5 has also been shown to be of potential utility for gas separa-
tions, including the separation from air of O_2/N_2 [89], the separation of C_8 aromatics including benzene and o-xylene [90] and the separation from N_2 of CH_2Cl_2 [91].

1.5.4 AlPO$_4$-5 Membranes

AlPO$_4$-5 membranes promise the same potential benefits as membranes of other zeolite-based materials. In the past few years, due to their molecular sieving action, potential value as catalytic membranes in membrane reactors, and value as chemical sensors or low dielectric constant materials [78], a number of papers have been published on the growth of such membranes [28, 78, 92, 93, 94, 85, 29, 95, 96]. Growth of oriented crystals in such a membrane can effectively enhance the mass transport and control the thermal stress applied during chemical separations [97].

Another possible use of such membranes is as a way to induce preferential orientation of the zeolite allowing controlled host-guest interaction. This opens up a wide range of potential applications for composites as molecular wire, quantum electronic and non-linear optical devices [29].

Several different types of substrate have been used to synthesise oriented films or membranes of AlPO$_4$-5, including gold coated quartz crystal microbalances, Ni grids, and anodized alumina. All of these membranes were synthesized using microwave heating as the energy source [98].

Bein et al. [99] prepared ultrathin films of AlPO$_4$-5 using pretreated, gold-coated quartz crystal microbalances as a substrate. These membranes were not crystallographically aligned. Caro et al. [92] prepared large AlPO$_4$-5 single crystals via microwave heating which were then c-axis oriented
within a nickel grid in an electric field, i.e. with the porosity perpendicular to the substrate. Voids in the membrane were sealed by deposition of nickel. Tsapatsis et al. [93, 94] prepared AlPO$_4$-5 membranes on a seeded, pretreated silicon substrate. These were prepared via two methods. The first method published by this group yielded a highly oriented but poorly intergrown film, the gaps in which were subsequently filled by a second round of in-plane AlPO$_4$-5 growth, and the second a poorly aligned yet highly intergrown film without the second step. Shih et al. [29] prepared an aligned AlPO$_4$-5 membrane crystallised on anodised alumina via a microwave heating method that suspended the anodised alumina at the liquid/air interface. These membranes showed a high degree of alignment; however in the SEM micrographs shown in the paper, they do not appear to fully cover the surface of the anodized alumina substrate [29]. This work has also been extended to the synthesis of SAPO-5 membranes [95]. All of the AlPO$_4$-5 membranes prepared on anodic alumina thus far have used highly ordered anodic alumina membranes synthesized in a laboratory setting as the substrate. These membranes are expensive and not readily available on a larger scale.

Qiu et al. [97] have taken the preparation of AlPO$_4$-5 membranes one step further, preparing a single crystal AlPO$_4$-5 substrate by gluing large AlPO$_4$-5 crystals onto a glass slide with their c-axes aligned perpendicular to the surface of the slide, and then growing a highly oriented molecular sieve film on top of this via epitaxial growth. The AlPO$_4$-5 film prepared has been doped with the laser dye Rhodamine B for potential application as a microlaser system.
1.5.5 AlPO\(_4\)-5 as a host for other materials

Much of the recent research into AlPO\(_4\)-5 has utilised the open pore structure of AlPO\(_4\)-5 as a template to fabricate host-guest composite materials for a range of novel applications.

AlPO\(_4\)-5 crystals are electrically insulating, optically transparent from ultraviolet to infrared, and thermally stable to 900 °C [100]. These properties, combined with their uniaxial open pore structure, make them an excellent starting point for the fabrication of host-guest nanostructured composites. A number of different materials have been encapsulated within the pores of AlPO\(_4\)-5 to generate novel materials with interesting properties on the nanoscale.

One example of this is the encapsulation of p-nitroaniline within the pores of AlPO\(_4\)-5. It was discovered by Stucky et al. [101, 102] in 1988 that p-nitroaniline-loaded AlPO\(_4\)-5 was an efficient second harmonic generator. Second harmonic generation (SHG, also called frequency doubling) is a nonlinear optical process, in which photons interacting with a nonlinear material are effectively "combined" to form new photons with twice the energy, and therefore twice the frequency and half the wavelength of the initial photons.

This discovery led the way for the inclusion of a number of different types of organic molecule within AlPO\(_4\)-5, for potential applications in optical data storage or optical frequency doubling [82], laser frequency conversion, and as microcavity lasers [100]. Dyes introduced into the pores of AlPO\(_4\)-5 to date include pyridine 2 [103], coumarin 466, coumarin 7, and DCM [104]. Laser emission has been demonstrated from these com-
posites [103]. These composites will be discussed in more depth in the following section.

Another example of use of AlPO$_4$-5 for the preparation of a novel material is single walled carbon nanotubes (CNTs), which can be grown within the pores of AlPO$_4$-5 via chemical vapour deposition. Confining the growth of the CNTs within the pores of the zeolite allows control of the nanotube diameter and growth direction. These nanotubes may be useful in carbon nanotube based electronics [105, 106].

1.5.6 Microlaser Introduction

A laser (short for light amplification by stimulated emission of radiation) consists of a gain medium inside a highly reflective optical cavity, as well as a means to supply energy to the gain medium [107]. The gain medium is a material with properties that allow it to amplify light by stimulated emission. Stimulated emission is the process by which an electron, perturbed by a photon having the correct energy, may drop to a lower energy level resulting in the creation of another photon. The perturbing photon is seemingly unchanged in the process, and a second photon is created with the same phase, frequency, polarization, and direction of travel as the original [107].

In its simplest form, a cavity consists of two mirrors arranged such that light bounces back and forth, each time passing through the gain medium. Typically one of the two mirrors, the output coupler, is partially transparent. The output laser beam is emitted through this mirror.

A dye laser is a laser in which an organic dye is used as the gain
Figure 1.8: Simple laser. Principal components: 1. Gain medium, 2. Pump, 3. High reflector, 4. Output coupler, 5. Laser beam [108].

medium. The gain medium is the source of optical gain within a laser. Usually the dye is in solution, however the same dyes may be utilised in AlPO$_4$-5/dye microlasers, in which the optically transparent AlPO$_4$-5 single crystals act as the optical cavity, with the hexagonal plate-like faces of the crystal behaving as the mirrors, and the gain medium provided by organic dye molecules occluded within defects in the crystal. It is proposed that these micro sized lasers will have a greatly reduced lasing threshold due to the nanometre size of the laser [109].

1.5.7 AlPO$_4$-5/dye Microlasers

There are several methods by which an AlPO$_4$-5/laser dye composite may be synthesized. One method by which these microlaser systems are synthesized is hydrothermal synthesis of the zeolite according to the usual synthetic procedure, followed by removal of the organic structure direct-
1.5. AlPO$_4$-5

...ing agent and loading of the dye molecule either from solution or from the vapor phase by insertion (for neutral molecules) or ion exchange (for cationic molecules) [110]. This type of synthesis can lead to high dye loadings, but requires several steps. The more elegant synthetic method involves synthesis of the composite in one step, in which the dye molecule is introduced into the framework of the zeolite in-situ during synthesis. This requires that the organic dye be adapted to the (relatively harsh) conditions of hydrothermal synthesis, but does give more flexibility than may initially be assumed, as it has been shown that a guest molecule may reside in an enlarged defect pore that it has created during its occlusion, as well as directly within the pores of the host [110].

Examples of the first type of synthesis include the vapor phase diffusion of disperse red 1 (2-[4-(4-nitrophenylazo)-phenyl]-ethylamino-ethanol) molecules into the channels of AlPO$_4$-5 single crystals. The composite material generated by this synthesis shows second harmonic generation when irradiated by a laser, meaning that the dye is well aligned within the pores of the zeolite [100]. Another similar example involves the diffusion of the laser dye Styryl 7 into AlPO$_4$-5. These composites have also demonstrated laser activity [59].

Examples of the second type of synthesis include the in-situ inclusion of pyridine 2 and rhodamine BE50 dyes into AlPO$_4$-5. Laser activity was observed from pyridine 2 loaded single crystals as the dye molecules in these crystals were highly aligned, although at higher dye loadings crystal growth was disturbed, and a bundle-like morphology was observed. Crystals with this morphology did not exhibit laser activity [83]. Fluo-
rescence emission from the rhodamine BE50 doped crystals was partially polarized, meaning that the guest molecules were only weakly aligned within the host crystals.

Schuth et al. [111] prepared AlPO\(_4\)-5 based composites via in situ inclusion of the laser dyes coumarin 466, coumarin 7, pyridine 2 and DCM within AlPO\(_4\)-5 single crystals. An image of the composites fluorescing under UV is shown in Fig. 1.9. Laser activity was demonstrated from the DCM/AlPO\(_4\)-5 composites when a single crystal was attached to a glass slide and irradiated with a Nd/YAG laser.

Because of the nanometre size of the resonator for these AlPO\(_4\)-5 based single crystals the lasing threshold is much lower than that of conventional millimetre sized lasers [109]. One potential difficulty of these materials, however, is aligning the microlasers relative to the pump. One potential way to overcome this is to force alignment of the AlPO\(_4\)-5 crystals within a membrane in which the individual zeolite crystals are held in a particular orientation. It is this aspect of the technology that this work explores.

1.6 Project Aims/Summary

The aim of this project was to demonstrate the ability to produce a composite material incorporating crystallographically aligned crystals of a zeolite. In turn, the zeolite should contain molecular sized channels aligned such that the composite material could contain molecules with non-linear optical properties highly preferentially aligned within the channels of the zeolite.

The present study investigates the *in-situ* growth of the aluminophos-
phate AlPO₄-5 within the nanochannels of a porous anodic alumina host. This host material may be locally fabricated, highly ordered anodic alumina membranes, or inexpensive commercially available Whatman Anodisc membrane filters. The high aspect ratio of the template pores compels the aluminophosphate crystals to grow in the preferred c-axis orientation. This material is then used as a host for the laser dye 4-dicyanomethylene-2-methyl-6-(p(dimethylamino)styryl)-4H-pyran (DCM).

The work described in this thesis provides a method for reproducibly forming the highly aligned arrays of AlPO₄-5 within porous anodic alumina membranes, which are then doped with the laser dye DCM. DCM is a highly stable molecule with excellent 2nd order non-linear optical properties, which was chosen as it has previously been incorporated into AlPO₄-5 single crystals via an in-situ synthesis [104]. In order to be successfully incorporated into AlPO₄-5 a laser dye needs to be stable, uncharged (as protonated groups can interfere with crystal grain growth), and relatively long and linear. Although DCM is larger than the channel width of AlPO₄-5, it has been shown to be incorporated into defect sites within the crystal structure during crystal growth [104].

The approach used in this work involves crystallization of the zeolite AlPO₄-5 within the pores of a porous anodic alumina template via a pore plugging synthesis. The AlPO₄-5 membranes are synthesized hydrothermally, using microwave heating as the energy source, and the dye DCM is incorporated into the membrane during crystallization.

The highly aligned arrays of DCM-doped AlPO₄-5 produced as a result of this work may then be suitable for non-linear optical applications.
Figure 1.9: AlPO$_4$-5/laser dye composites fluorescing under UV [104].
Chapter 2

Materials And Methods

2.1 Introduction

This chapter outlines the materials and methods used in the fabrication of AlPO$_4$-5 using PAA as a structure directing agent. Also included are details of the analytical techniques and instruments used to investigate the properties of these materials. Each subsection outlines a method or instrument employed during this research.

2.2 Materials

2.2.1 Reagents

The chemicals used in these syntheses, and their purities as assayed by the manufacturer, are given in Table 2.1. The laser dye 4-dicyanomethylene-2-methyl-6-(p(dimethylamino)styryl)-4H-pyran (DCM) and the other laser dyes used in this work were synthesised by Andrew Kay of Industrial
Research Ltd. DCM was synthesised via the method in Hammond et al., 1979 [112]. Alphabond 300 is a material used by the cementing industry composed of ρ alumina. The manufacturer’s information sheet is included in appendix D.

Table 2.1: Chemicals used and their respective purities and manufacturers.

<table>
<thead>
<tr>
<th>Chemical</th>
<th>Purity</th>
<th>Manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>HF</td>
<td>48% in aqueous solution</td>
<td>BDH</td>
</tr>
<tr>
<td>Aluminium isopropoxide</td>
<td>98%</td>
<td>Acros</td>
</tr>
<tr>
<td>Alphabond 300</td>
<td>N/A</td>
<td>Almatis GmbH</td>
</tr>
<tr>
<td>Triethylamine</td>
<td>99%</td>
<td>Unilab</td>
</tr>
<tr>
<td>Orthophosphoric acid AR</td>
<td>98%</td>
<td>Park Scientific Ltd.</td>
</tr>
</tbody>
</table>

2.2.2 Porous Anodic Alumina

Both commercial porous anodic alumina membranes (Anodisc 13 0.2 μm membrane discs by Whatman) and porous anodic alumina membranes synthesized locally were used [32].

Due to the higher stability of the Kirchner PAA, these syntheses were carried out using only 200 eq. H_2O and a 1:1 ratio of Al:P (as the membrane was not corroded during synthesis in the way that the anodiscs were). PAA membranes prepared using two different acidic electrolytes were trialed. PAA anodised in sulphuric acid (pore size of \sim 30 nm) was found to give poor samples. The pores of these membranes may be too small to allow the AlPO$_4$-5 crystallites to penetrate during crystallisation, however PAA membranes prepared using oxalic acid (pore size of \sim 50 nm) gave high quality AlPO$_4$-5 membranes, without damage to the PAA substrate.

The PAA membranes prepared using oxalic acid as the electrolyte were
2.2. Materials

Anodised at a constant 150.0 V potential versus a platinum cathode for at least 12 hours. They were then pore opened in 5% H_3PO_4 for at 30°C for 60 minutes [32]. Table 2.2 A discusses differences between the properties of the two types of membrane successfully used, while figure 2.1 shows a comparison between the physical appearance.

Table 2.2: Comparison of Whatman Anodisc membrane filters and highly ordered periodic PAA.

<table>
<thead>
<tr>
<th></th>
<th>Anodiscs</th>
<th>IRL PAA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrolyte</td>
<td>H_3PO_4</td>
<td>(COOH)$_2$</td>
</tr>
<tr>
<td>Pore Size</td>
<td>$\sim0.2\mu\text{m}$</td>
<td>$\sim0.05\mu\text{m}$ (depending on electrolyte)</td>
</tr>
<tr>
<td>Chemical/thermal</td>
<td>Stable over a pH range of 5-8, curls and cracks at $\sim600^\circ\text{C}$</td>
<td>Much higher resistance to extreme pH values, stable to above 1000°C</td>
</tr>
<tr>
<td>resistance</td>
<td>Pore Structure</td>
<td>Disordered</td>
</tr>
</tbody>
</table>

Figure 2.1: Commercially prepared Whatman Anodisc membrane (left) compared with PAA made by Kirchner et al. [32] (right).
2.2.3 Equipment

Furnaces - 90 °C pre-treatment and 180 °C crystallisation were performed in a Contherm digital oven, model number CAT 2150.

Microwave - a Kenwood Galaxy microwave (RM-1390) modified by the addition of a Shinho Microcomputer based programmable temperature controller (PC635-A/E) such that the synthesis temperature and time could be accurately controlled. More details of the modification of the microwave and its use are included in Appendix A.

2.3 Preparation

Firstly, a method was devised for the synthesis of bulk AlPO$_4$-5 without the use of HF. This method is outlined in 2.3.1. Two different syntheses were used, the first a route to highly aligned AlPO$_4$-5 membranes using a conventional oven as the heating source, and the second a quicker microwave route. The second route allows the laser dye DCM to be incorporated into the zeolite during crystallisation. This organic dye decomposes when subjected to long periods at the elevated temperature and pressure required for the conventional oven synthesis.

The first synthesis employs aspects of various published routes to AlPO$_4$-5 adjusted to optimise the required features of the crystallites and synthetic conditions. The second technique is similar, with variations in the heating and the addition of HF as a mineraliser as proposed by Qui et al. [79]. The design of these procedures is discussed in more detail in chapters 3 and 4.
2.3. Preparation

2.3.1 Conventional Hydrothermal Synthesis of bulk AlPO₄-5

A reaction mixture was prepared by combining alphabond 300 (α-alumina), orthophosphoric acid, triethylamine and distilled water in the ratio

$$\text{Al}_2\text{O}_3 : \text{P}_2\text{O}_5 : 1.6\text{TEA} : 400\text{H}_2\text{O}$$

via the following method: Alphabond 300 (1.040 g, 0.01 mol) was suspended in H₂O (5.45 g, 0.3 mol) in a beaker with vigorous magnetic stirring. Orthophosphoric acid (2.352 g, 0.02 mol) then triethylamine (1.651 g, 0.016 mol) were added dropwise while continuing to stir. The sample was then stirred vigorously for 30 minutes before being transferred to a Teflon lined steel autoclave and pre-treated at autogeneous pressure and without stirring at 90°C for 24 hours. The temperature was then increased to 180°C for hydrothermal crystallization for a further 24 hours.

After crystallization the autoclave containing the sample was quenched under flowing water and the crystals were recovered using a Buchner funnel and flask. The crystals were then washed with distilled water and dried at 70°C in an oven overnight.

2.3.2 AlPO₄-5 within the pores of PAA - Conventional Hydrothermal Synthesis

A reaction mixture was prepared by combining alphabond 300 (α-alumina), orthophosphoric acid, triethylamine and distilled water in the ratio

$$\text{Al}_2\text{O}_3 : \text{P}_2\text{O}_5 : 1.6\text{TEA} : 400\text{H}_2\text{O}$$
via the following method: Alphabond 300 (0.459 g, 0.0045 mol) was sus-
pended in H$_2$O (36.0 g, 2 mol) in a beaker with vigorous magnetic stir-
ring. Orthophosphoric acid (1.152 g, 0.01 mol) then triethylamine (0.810 g, 0.008 mol) were added dropwise while continuing to stir. The sample was then stirred vigorously for 30 minutes before being transferred to a Teflon lined steel autoclave and pre-treated at autogeneous pressure and without stirring at 90 °C for 24 hours. The autoclave containing the pretreated gel was quenched under flowing water, opened, and an anodic alumina template was floated at the surface of the liquid on a doughnut-shaped Teflon ring (see figures 2.2 and 2.3). The sample was then re-sealed in the autoclave for hydrothermal crystallisation for 24 hours at 180 °C.

![Figure 2.2: A Whatman Anodisc membrane (left) next to the Teflon ring (right) used in this synthesis.](image)

After crystallization the sample was quenched again under flowing water and the composite membrane removed carefully with tweezers. The membrane was then washed with distilled water under ultrasonic vibration for 2 minutes three times to remove any loose material on the surface, and dried at 70 °C in an oven overnight.
2.3.3 AlPO$_4$-5 Within the Pores of PAA - Attempts to Dope AlPO$_4$-5 with Laser Dyes during Conventional Oven Synthesis

The reaction mixture was prepared as in section 2.3.2, however before pre-treatment at 90°C an ethanolic solution of the laser dye in question (0.00025 mol of dye dissolved in 0.138 mol/6.36 g ethanol) was added to the synthesis liquor. The synthesis was then carried out as detailed above. After washing the membrane in distilled water, it was washed well in ethanol and then refluxed in ethanol for 4 hours to remove all trace of
material adsorbed onto the crystal surface [83]. Samples were then dried at 70 °C in an oven overnight. In some of the syntheses the procedure discussed above was modified slightly in attempts to increase the chance of successfully incorporating the dyes into the membrane. The dyes used and changes made to the standard synthesis are detailed in Table 2.3. None of these syntheses were successful.
Table 2.3: Laser dyes trialed during conventional oven syntheses, and the results of these syntheses.

<table>
<thead>
<tr>
<th>Dye Used</th>
<th>Result of Synthesis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dye decomposed during synthesis.</td>
</tr>
<tr>
<td></td>
<td>Dye decomposed during synthesis.</td>
</tr>
<tr>
<td></td>
<td>The dye (DCM) had partially decomposed during synthesis, and the crystals formed were berlinite (a condensed phase AlPO₄), rather than AlPO₄-5.</td>
</tr>
<tr>
<td></td>
<td>A poorly aligned and poorly crystalline AlPO₄-5 membrane was produced from this synthesis, but the dye was not incorporated into the membrane.</td>
</tr>
</tbody>
</table>
Table 2.3: Continued.

<table>
<thead>
<tr>
<th>Dye Used</th>
<th>Result of Synthesis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Poor surface covering and poorly aligned, but crystalline (AlPO$_4$-5). Dye does not appear to be incorporated.</td>
</tr>
<tr>
<td></td>
<td>Dye decomposed the anodisc was badly decomposed.</td>
</tr>
<tr>
<td>AlPO$_4$-5 with DCM added and using aluminium isopropoxide in place of Alphabond 300 as the aluminium source.</td>
<td>Anodisc dissolved.</td>
</tr>
<tr>
<td></td>
<td>Dye almost completely decomposed during the synthesis.</td>
</tr>
<tr>
<td></td>
<td>Dye completely decomposed during the synthesis.</td>
</tr>
</tbody>
</table>
2.3.4 AlPO$_4$-5 Within the Pores of PAA - Microwave Synthesis

The reaction mixture was prepared as for the first synthesis, and the 90 °C pre-treatment was carried out in the Contherm oven as detailed above. After the pre-treatment 0.007 mol/0.3 g hydrofluoric acid was added with stirring and the sample was transferred from the steel autoclave to the microwave-safe pressure vessel. An anodic alumina template was floated on the surface as shown in Fig. 2.3. The autoclave was then sealed for crystallisation at 180 °C for 10 minutes via microwave heating. The heating program involved heating to 180 °C over 1 minute 40 seconds (using full power on the microwave) and holding at temperature for a further 10 minutes (using a program in which the solenoid of the microwave was controlled by the Shinho temperature controller to maintain a constant temperature of 180 °C).

After crystallization the sample was quenched again under flowing water and the membrane removed carefully with tweezers. The membrane was then washed with distilled water under ultrasonic vibration for 2 minutes three times to remove any loose material on the surface. Samples were then dried at 70 °C in an oven overnight.

2.3.5 AlPO$_4$-5 Within the Pores of PAA doped with DCM - Microwave Synthesis

The reaction mixture was prepared as in section 2.3.4, however before pre-treatment at 90 °C an ethanolic solution of DCM (0.00025 mol / 0.08 g of
DCM dissolved in 0.138 mol/6.36 g ethanol) was added to the synthesis liquor. The synthesis was then carried out as detailed in 2.3.4. After washing the membrane in distilled water, it was washed well in ethanol and then refluxed in ethanol for 4 hours to remove all trace of material adsorbed onto the crystal surface [83]. During this refluxing no dye was observed to be extracted. Samples were then dried at 70°C in an oven overnight.

2.4 Template Removal

Template removal was performed by heating samples in a tube furnace under vacuum for 24 hours. Samples were heated from room temperature to 300°C over a period of 3 hours and then held at temperature for 24 hours before being furnace cooled. The vacuum pump used was a Speedivac high vacuum pump. Section 3.5.1 discusses the reasons for choosing this method.

2.5 Analysis

2.5.1 Scanning Electron Microscopy

Scanning electron microscopy was carried out on a Jeol JSM 6500-F. The DES unit is a Jeol JED 23003 BU. Samples were coated with carbon (2 coatings, 8 nm) or platinum (3 coatings, 12 nm) before analysis.
2.5. Analysis

2.5.2 X-Ray Diffraction

Crystallization of the AlPO₄-5 was monitored via X-ray diffraction (XRD) using a Bruker D8 advance diffractometer with an incident beam Goebel mirror and 0.23 degree parallel plate diffracted beam collimator using Co K radiation. XRD measurements were performed on the final AlPO₄-5/PAA membrane samples, which were laid in an aluminium XRD holder standard to this diffractometer. A 2θ scan from 4° to 80° at a rate of 0.5° per minute was used.

AlPO₄-5 was identified by matching with pattern number 00-039-0216 for AlPO₄-5 in the database maintained by the International Centre for Diffraction Data using the software program EVA, a module of Diffrac-Plus (Bruker AXS).

2.5.3 Fluorescence Spectra

These spectra were recorded on an Ocean Optics Fibre Optics UV/VIS/IR spectrometer, with the 489 nm Line from an Argon Ion Laser as the excitation source. No preparation was required, as the composite membranes were placed in the beam lying on a glass slide.
Chapter 3

Conventional Oven Synthesis of AlPO$_4$-5 within PAA

3.1 Introduction

This chapter provides a method for reproducibly forming highly aligned arrays of AlPO$_4$-5 within the nanochannels of an anodic alumina host via a hydrothermal synthesis. This synthesis was carried out via the method described in section 2.3.2, and uses a conventional oven as the heating source. Crystallization of the AlPO$_4$-5 was monitored via X-ray diffraction. XRD shows a high degree of crystal alignment, with the ratio of preferential alignment being over 300 for a typical membrane.

SEM shows that the AlPO$_4$-5 is incorporated into the pores of the membrane, with a high degree of pore filling.
3.2 Synthesis

Various different methods have been reported for the synthesis of AlPO$_4$-5
[82, 113, 114, 115, 116, 117, 104, 74, 75, 100], employing different templates,
aluminium sources and reaction conditions. An important consideration
in this study is the reactivity of the anodic alumina membranes used,
which are not stable to prolonged exposure to extreme pH values. A num-
ber of different synthetic routes were tested for this thesis before a method
was developed involving relatively mild conditions and a pre-treatment to
facilitate crystallisation of AlPO$_4$-5 within the pores of the anodic alumina
membrane. Initially the focus of this research was to synthesise AlPO$_4$-5
membranes using a conventional hydrothermal synthesis, and Whatman
Anodisc membranes as the template, and to then incorporate a non-linear
photonic molecule into the pores of the zeolite via in-situ inclusion.

Firstly, bulk AlPO$_4$-5, was synthesised, using a combination of tech-
niques published by Girnus et al. [82] and Wilson and Flanigen [74], in
order to avoid the use of HF which is typically used in such syntheses as
a mineraliser [79], and which is extremely dangerous as it is both highly
corrosive to human flesh and may cause decalcification of the bones.

The first several attempts were unsuccessful, either forming a clear so-
lution or a thick viscous gel, despite extended crystallisation periods. Sev-
eral steps were taken in order to prevent this viscous gel from forming, as
it appeared to hinder crystallisation. Firstly, the amine template around
which the micelles of AlPO$_4$-5 were formed was changed to triethylamine,
used in a 1.6 ratio. This was in place of the more reactive tetramethylam-
monium hydroxide used by Girnus et al. [82], as tetramethylammonium
3.2. Synthesis

hydroxide was found to cause formation of a highly viscous gel through which the crystallites could not move freely.

Secondly, the aluminium source used was changed to alphabond 300. Alphabond is a commercial product used by the cement industry which contains ρ alumina - a reactive form of amorphous alumina. This product is less reactive than pseudoboehmite or aluminium isopropoxide, the most common aluminium sources used for synthesis of AlPO$_4$-5, and therefore helps prevent formation of a highly viscous gel when used for this synthesis.

As the synthesis liquor was now less reactive, a 90°C pre-treatment step was incorporated into the synthesis [118, 119, 120, 121, 122] in order to facilitate crystallisation by production of a precursor to the microporous aluminophosphates known as metavariscite [122]. This intermediate may then be easily transformed to AlPO$_4$-5 during the subsequent crystallisation [118].

These changes produced a successful, reproducible synthesis for bulk AlPO$_4$-5, which is described in section 2.3.1.

Once this synthetic procedure had been developed, attempts were made to add a Whatman Anodisc membrane to the synthesis liquor to try to force AlPO$_4$-5 to crystallise within the membrane. As porous anodic alumina is susceptible to acidic media, these attempts were unsuccessful, as the anodiscs dissolved, even if added after the 90°C pre-treatment step.

In order to overcome this, the water content for the synthesis was hugely increased, as in the work of Chao et al. [28] in order to reduce the damage done to the porous anodic alumina by exposure to the acidic solution. The
water content was increased from 30 equivalents to 200, and finally 400 equivalents. Although immersion of the PAA membrane in this dilute synthesis liquor also resulted in dissolution of the membrane, if the PAA membrane was floated on the surface of the synthesis liquor the membrane largely survived.

This technique was adopted as it may facilitate *c-axis* crystallisation, by forcing the crystal nuclei into the pores of the substrate with the *c-axis* normal to the plane of the substrate. This is due to upward vapour pressure at the water/vapour interface, as crystallites are presumed to behave in solution like logs floating in a river, and pack in order [29]. This procedure also serves to prevent excessive attack of the PAA membrane by the acidic synthesis liquor.

In order to suspend the PAA membrane at the vapour/solution interface during crystallisation, the porous anodic alumina substrate was floated on a Teflon doughnut. The PAA membrane was not added to the autoclave until after the 90°C pre-treatment step as the pH was lower at this point (before any heating the pH=1, after pre-treatment the pH=7, after crystallisation the pH=7), which minimised damage caused to the PAA membrane by the acidic synthesis liquor. This synthetic procedure produced a well aligned AlPO₄-5 membrane.

Other techniques which were trialed included adjusting the pH of the solution to ∼6 with NaOH or NH₄OH before addition of the PAA membrane. Samples made in this manner were found to be completely amorphous. A step in which the pretreated solution was introduced into the pores of the anodisc by vacuum infiltration was trialed, to attempt to force
3.2. Synthesis

the AlPO$_4$-5 to penetrate (and grow) all the way through the pores of the membrane, rather than just penetrating a short distance. This step was abandoned as membranes produced in this manner were mostly amorphous. Attempts were also made to design a more sophisticated Teflon float, however using Teflon of more than an 0.3 mm thickness caused the float to sink during synthesis.

Despite these measures taken to protect the porous anodic alumina from dissolution, when Whatman Anodiscs membranes were used as the PAA substrate they were somewhat degraded during crystallisation. To compensate for this samples were made using a 10% deficit of Al giving the synthetic ratios

$$0.9\text{Al}_2\text{O}_3 : \text{P}_2\text{O}_5 : 1.6\text{TEA} : 400\text{H}_2\text{O}$$

as dissolution of the anodisc during synthesis may cause a higher local concentration of Aluminium at the membrane surface. This reduction in aluminium proved to produce highly aligned, highly crystalline membranes.

At this point a number of samples were made to test the reproducibility of this technique. The final procedure used for conventional oven synthesis of AlPO$_4$-5/PAA membranes is discussed in section 2.3.2.
3.3 Crystallisation within Anodisc PAA membranes

3.3.1 XRD

X-ray diffraction data were collected on the surface of the membrane samples. The degree of penetration of the X-rays varies between approximately 4 µm at 4 degrees 2θ and 90 µm at 80 degrees 2θ, indicating that the diffraction patterns represent a combination of material on the surface and material occluded in the pores of the substrate. The XRD trace for a membrane made using a Whatman Anodisc porous anodic alumina membrane as the template, and the synthetic ratios

\[
\text{Al}_2\text{O}_3 : \text{P}_2\text{O}_5 : 1.6\text{TEA} : 400\text{H}_2\text{O}
\]

is shown in Fig. 3.1. This membrane was made via the method in section 2.3.2.

The peak intensities are clearly different from the reference pattern shown below the scan data, with the measured [002] and [004] reflections much larger than expected. This is due the preferred orientation of AlPO$_4$-5 crystals in the sample. In the θ - 2θ scans used, diffraction is only measured from lattice planes which lie parallel to the sample surface. The reference pattern assumes a random distribution of crystallites so that all lattice planes align with the sample surface with equal probability. However, our pattern shows that the [00l] planes lie parallel to the surface with a far greater frequency than random orientation would predict. This is equivalent to saying that most of the AlPO$_4$-5 crystals have their crystallographic \textit{c-axis} normal to the sample surface.
A quantitative measure of the degree of preferred orientation has been given by Tsai et al. [29], using the ratios of XRD peaks that are similar intensity in a powder sample to give a measure of the degree of preferred orientation in an aligned sample. The measures used in this study were:

\[
D_p = \frac{\text{Intensity of } [002] \text{ peak}}{\text{Intensity of } [100] \text{ peak}}
\]

\[
D_p' = \frac{\text{Intensity of } [002] \text{ peak}}{\text{Intensity of } [210] \text{ peak}}
\]

Perfect alignment would give a value of \(\infty \), random alignment would give a value of 1. For the sample shown in Fig. 3.1, this gives values of \(D_p = 105 \) and \(D_p' = 130 \). Averaging the above values gives a degree of preferred orientation is for this sample of approximately 118.

The XRD trace in Fig. 3.2 shows a sample made in the same manner, but with the ratios

\[0.9\text{Al}_2\text{O}_3 : \text{P}_2\text{O}_5 : 1.6\text{TEA} : 400\text{H}_2\text{O}\]

Reducing the amount of \(\text{Al}_2\text{O}_3 \) relative to the phosphate gave good quality membranes on Whatman anodiscs, possibly due to a higher local concentration of aluminium at the membrane surface due to dissolution of the membrane. Again, this membrane shows a high degree of preferential orientation, with \(D_p = 115 \) and \(D_p' = 168 \), giving an average degree of preferred orientation of approximately 142.
Figure 3.1: XRD trace for a membrane made via the method in section 2.3.2 using a Whatman anodisc.

3.3.2 SEM

SEM images of an AlPO$_4$-5 membrane made via the method in section 2.3.2 and with the synthetic ratios

$$\text{Al}_2\text{O}_3 : \text{P}_2\text{O}_5 : 1.6\text{TEA : 400H}_2\text{O}$$

are shown in Figs. 3.3, 3.4, and 3.5. Fig. 3.3 shows a view of a broken membrane edge, in which the AlPO$_4$-5 coating has broken away from the surface of the substrate, showing the crystals of AlPO$_4$-5 as they grow out.
3.3. Crystallisation within Anodisc PAA membranes

Figure 3.2: XRD trace for a membrane made via the method in section 2.3.2 using a highly ordered, periodic PAA membrane.

of the pores of the membrane. This confirms that the porous anodic alumina directs the growth of the zeolite layer. As this is a broken edge there is not complete pore filling, but images of the top face of the substrate in Figs. 3.4 and 3.5 confirm that the AlPO$_4$-5 layer is continuous, an important trait for molecular sieving applications.

Figs. 3.4 and 3.5 show the surface of this membrane. The hexagonal plate morphology of the top faces of the crystals can also be observed in Fig. 3.5, confirming the c-axis alignment of the membrane. These membranes were difficult to view under SEM due to charging, and the proper
Figure 3.3: A broken edge of an AlPO$_4$-5 membrane at 20000 magnification, showing crystal growth as it appears at the surface of the membrane.

correcting protocol had not been devised at the time these images were taken, hence the poor quality if the image in Fig. 3.5. The morphology of membranes made with a 10% deficit of Aluminium was very similar to that of those made without the deficit.
3.4. Crystallisation within Highly Periodic PAA

3.4.1 XRD

The XRD trace in Fig. 3.6 shows a sample made via the method in section 2.3.2, with the ratios

$$\text{Al}_2\text{O}_3 : \text{P}_2\text{O}_5 : 1.6\text{TEA} : 200\text{H}_2\text{O}$$

and using a locally made periodic PAA membrane anodised with oxalic acid by Kirchner et al. [32] as the template. These membranes had an average pore size of $\sim 50\text{nm}$. The AlPO$_4$-5 membranes made with locally
Figure 3.5: The surface of an AlPO$_4$-5 membrane at 8000 times magnification.

fabricated PAA were similar in quality to those in 3.3.1, but due to the higher stability of the PAA used the resultant membrane had much higher mechanical strength, and the PAA was not damaged during the synthesis. As above, the highly increased [002] and [004] peaks can be seen, with $D_p = 303$ and $D_p' = 275$, giving an average degree of preferred orientation of approximately 289.

The XRD trace in Fig. 3.7 shows another membrane prepared in the same manner on periodic PAA, in order to show the high degree of reproducibility of this technique, despite subtle variations in the PAA membranes used as templates for these syntheses. This membrane is even more highly aligned, with $D_p = 1133$ and $D_p' = 565$, giving an average of 849,
3.4. Crystallisation within Highly Periodic PAA

Figure 3.6: XRD trace for a membrane made via the method in section 2.3.2 using highly ordered, periodic PAA

much higher than that of similar membranes prepared by Tsai et al. [29], where the degree of preferred alignment was approximately 250.

3.4.2 SEM

SEM images of an AlPO₄-5 membrane made via the method in section 2.3.2 on highly ordered PAA are shown in Figs. 3.8, 3.9, 3.10 and 3.11. Figs. 3.8 and 3.9 show cross-sectional views of a broken membrane edge. From these images the c-axis alignment of the crystals can be clearly seen, along
with the high degree of pore filling. Figs. 3.10 and 3.11 show the top surface of the same membrane, showing the hexagonal plate morphology of the top face of the crystals. Some randomly oriented crystals can also be observed on the surface of the membrane, but the side views of the membrane confirm that the bulk of the AlPO$_4$-5 crystals are \textit{c-axis} aligned, as supported by the XRD data.

Figure 3.7: XRD trace for another membrane made via the method in section 2.3.2 using highly ordered, periodic PAA.
3.5 Template Removal

3.5.1 Introduction

A number of different methods have been used for the removal of templates from zeolite powders [123, 124, 125, 126, 127, 128, 129, 130], the most common of which is calcination. This is usually performed in air or oxygen at between 550-700 °C. The disadvantages of this technique are the fact that expensive organic templates cannot be recycled and that the fine structure of the material may be damaged during calcination. Recycling of the template is not an issue for this synthesis as such a small amount of
material is used, but as the porous anodic alumina templates used in this synthesis cannot withstand such high temperatures without curling [131] calcination is not an option. Appendix C details papers that use milder methods of template removal that may be suitable for the samples used in this study. Due to ease and availability of the technology the method used in this thesis is vacuum template removal, as discussed by Goworek et al. [130] This method involves heating the sample under vacuum at low temperatures (up to 250 °C) for several hours in order to force the degradation of the template and evaporation of the fragments.

In this study these limits were increased somewhat in order to com-
3.5. Template Removal

Figure 3.10: The surface of an AlPO$_4$-5 membrane at 300 times magnification

pensate for the hindrance to evaporation caused by the confinement of the zeolite within the anodic alumina membrane, which may increase the difficulty of removal. To this end the samples were exposed to vacuum using a Speedivac high vacuum pump in a tube furnace at 300 °C for 24 hours as discussed in 2.4.

3.5.2 XRD

X-ray diffraction data for a membrane made via the method in section 2.3.2 before and after vacuum template removal via the method discussed in 2.4 are shown in Fig. 3.12. These data confirm that the template removal method used does not destroy the fine structure of the AlPO$_4$-5. The two
traces are almost identical, with very similar peak intensities.

The successful removal of the amine template occluded in the pores of the zeolite was confirmed by testing the gas permeability of the membrane after vacuum template removal. Before template removal the amine template in the zeolite layer completely blocked the membrane pores, hence no gas was able to pass through the membrane. After template removal the sample was gas permeable, showing that the amine template had been removed.

These membranes showed a modest gas seperative ability, but far below that of conventional membrane filters. AlPO₄-5 is not however the
3.5. Template Removal

Figure 3.12: A comparison of the XRD traces of an AlPO₄-5 membrane pre-and-post template removal via the method discussed in 3.5.1.

optimum zeolite for a gas separative membrane, and this work focuses more on potential utility of these membranes after doping with the laser dye DCM.

3.5.3 SEM

As SEM is a destructive method for these membranes due to the coating process, it was not possible to take SEM images of the same membrane both before and after template removal. Fig. 3.13 shows an AlPO₄-5
membrane made on Kirchner PAA [32] following template removal via the method discussed in 2.4. This image shows the same hexagonal plate-like morphology seen in similar membranes prior to template removal, confirming that the structure of the zeolite is intact after the template removal process.

3.6 Discussion

Although the method discussed in this chapter allows the formation of highly aligned AlPO$_4$-5 membranes, there are some drawbacks to this technique. When Whatman Anodisc membrane filters are used as the
3.6. Discussion

porous anodic alumina template for this synthesis they are degraded to
the point where they lack mechanical stability and are therefore unable
to be used in any application where any degree of mechanical strength is
required. Secondly, the synthesis conditions are too hostile to allow in-
corporation of organic dyes into the membranes during synthesis. This
significantly reduces the potential usefulness of this technique.

In order to overcome these challenges the crystallisation time needed
to be greatly decreased, requiring that the method of heating for synthe-
sis be changed to microwave heating. As a microwave safe pressure vessel
and a microwave in which the temperature, time and heating rate could be
controlled were not available it became necessary to design a microwave
autoclave and modify an existing laboratory microwave in order to carry
out a microwave synthesis. The design of the Teflon lined microwave au-
toclave is discussed in Appendix A, and its usage is discussed in Chap-
ter 4.
Conventional Oven Synthesis of AlPO$_4$-5 within PAA
Chapter 4

Microwave Crystallisation of AlPO\textsubscript{4}-5 doped with DCM within Porous Anodic Alumina

4.1 Introduction

Many of the traditional routes to AlPO\textsubscript{4}-5 involve exposing the PAA membrane to highly acidic conditions for extended periods of time, rendering it brittle and unworkable, or dissolving it entirely. The synthetic procedure discussed in chapter 3 was designed with this in mind, and although it was successful, it required a 24 hour crystallisation at 453 K in which the membrane was suspended in an acidic solution. When using Whatman Anodiscs as the PAA membrane this synthesis caused the PAA to become brittle and difficult to handle.

The second aim of this work was to enclose an organic laser dye, DCM, within the framework of the AlPO\textsubscript{4}-5, adding another element of diffi-
Microwave Crystallisation of AlPO₄-5 doped with DCM within Porous Anodic Alumina

culty. This dye is also susceptible to acidic media, particularly at the elevated temperatures at which this synthesis was carried out. The 24 hour crystallisation used in the first synthesis caused the dye to almost fully degrade.

One way to speed the crystallisation of AlPO₄-5 is to employ microwave heating as the energy source. Microwave syntheses of AlPO₄-5 typically involved a crystallisation time of between 10 and 30 minutes [82, 83] which greatly reduces the exposure of the PAA and DCM to the corrosive synthesis liquor. In order to carry out a hydrothermal synthesis in the microwave however a microwave pressure vessel is necessary. To this end a Teflon lined microwave autoclave in which the temperature, time, and heating rate could be controlled was designed (see appendix A for details). Although using microwave heating greatly reduced the crystallisation time, this synthesis did require the addition of a small amount of HF as a mineraliser as discussed by Guth et al. [79] to facilitate crystallization. It was also found that using a conventional oven pre-treatment followed by a microwave crystallisation gave the optimum quality membranes. However, using this second synthetic procedure allowed crystallisation to occur in 10 minutes rather than 24 hours. This meant that Whatman Anodiscs could be used as the substrate rather than the highly ordered PAA, and also allowed the possibility of including organic dyes within the AlPO₄-5.
4.2 Initial Microwave Synthesis

The design of the microwave autoclave and the modifications made to the microwave with which it was used are discussed in appendix A. In order to use this autoclave the synthetic procedure needed to be modified to be suitable for microwave crystallization. The experiments in which this microwave autoclave was used are discussed below.

Firstly, the 90°C conventional-oven pre-treatment was kept in order to minimise the crystallisation time needed. Despite this it was discovered that in order to achieve crystallisation in the microwave it was necessary to add a small amount of HF (0.007 mol/0.3 g), to the synthesis liquor before crystallisation, as discussed by Guth et al. [79].

It was found that a 10 minute crystallisation at 180°C gave the highest quality samples, with maximum material occluded in the pores of the PAA substrate while minimising the amount of randomly oriented material on the surface of the membrane. Full details of the synthesis used can be found in section 2.3.4.

4.2.1 XRD of AlPO$_4$-5 prepared in the Microwave

The XRD trace for a membrane made using a Whatman Anodisc membrane as the template, and the synthetic ratios

\[
\text{Al}_2\text{O}_3 : \text{P}_2\text{O}_5 : 1.6\text{TEA} : 400\text{H}_2\text{O} : 1.4\text{HF}
\]

is shown in Fig. 4.1. This membrane was made via the method in section 2.3.4 with a 10 minute crystallisation in the microwave.
Microwave Crystallisation of AlPO$_4$-5 doped with DCM within Porous Anodic Alumina

Figure 4.1: XRD trace for a membrane made via the method in section 2.3.4 using a Whatman anodisc.

For this sample $D_p = 214$ and $D'_p = 51$. Averaging the above values gives a degree of preferred orientation is for this sample of approximately 133. Although this is lower than that seen for conventional oven synthesis, this still represents a high degree of alignment. At this point it was decided to try *in-situ* encapsulation of the laser dye DCM (4-dicyanomethylene-2-methyl-6-(p(dimethylamino)styryl)-4H-pyran) within the AlPO$_4$-5/PAA membrane.
4.3 Synthesis of DCM@AlPO$_4$-5

4.3.1 Introduction

One aim of this research was to encapsulate a laser dye within the pores of an AlPO$_4$-5 membrane via an \textit{in-situ} synthesis. Various laser dyes have previously been encapsulated within AlPO$_4$-5 including coumarin 7, coumarin 466, pyridine 2, Styryl 7 and DCM [103, 104, 82, 59, 83]. These dyes were selected to be uncharged (as protonated groups can interfere with crystal growth), and relatively long and linear (the unit cell of AlPO$_4$-5 has $a=13.8$ Å, $c=8.6$ Å and channel width 7.3 Å). The laser dye DCM is, however, larger than the channel size, but has been successfully incorporated into defect sites in the crystal structure of AlPO$_4$-5.

![Figure 4.2: The laser dye DCM (4-dicyanomethylene-2- methyl - 6 - (p(dimethylamino)styryl)-4H-pyran).](image)

DCM was chosen, as it is an highly stable molecule with excellent 2nd order non-linear optical properties, which has previously been shown to
be incorporated into AlPO$_4$-5 single crystals via an *in-situ* synthesis without disturbing the crystal morphology, as some of the other laser dyes previously used had done [83]. Additionally, laser action had been demonstrated from single crystal DCM/AlPO$_4$-5 laser composites [104]. The structure of DCM is shown in Fig. 4.2.

4.3.2 Synthesis

Once the microwave synthesis had been designed attempts were made to incorporate DCM into the synthesis. The DCM was initially dissolved in ethanol, as it is relatively insoluble in water, and added to the synthesis liquor prior to the 90°C pre-treatment step. Varying amounts of DCM and ethanol were trialed, in order to find the optimum with respect to amount of DCM incorporated and crystallinity of the final membrane. The synthetic procedure used is given in section 2.3.5. After the synthesis the membrane was first washed well with distilled water, and then refluxed in ethanol for several hours to remove any DCM that was physically adsorbed on the surface of the membrane. During this refluxing no DCM was observed to be extracted, suggesting that the DCM that remained was incorporated into the crystal structure of the AlPO$_4$-5 crystals, rather than simply adsorbed onto the surface of the membrane. Further evidence for this can been found in section 4.3.6.

4.3.3 XRD

The XRD trace for a sample made via the method in 2.3.5 is shown in Fig. 4.3. This sample has a slightly lower degree of alignment, which may
4.3. Synthesis of DCM@AlPO$_4$-5

Figure 4.3: An XRD trace for a composite membrane made via the method in 2.3.5 with the laser dye DCM incorporated into the membrane during crystallisation.

be due to the effect of the DCM on the crystal structure of the zeolite. For this sample $D_p = 36$ and $D'_p = 66$. Averaging the above values gives a degree of preferred orientation for this sample of approximately 51. While this is lower than in previous samples it is still a significant degree of alignment, and (as supported by SEM). Most of this decrease can be attributed to randomly oriented AlPO$_4$-5 that formed on the surface of the membrane during the microwave crystallization.
4.3.4 SEM

Figure 4.4: DCM/AlPO₄-5 membrane at 2300 magnification.

SEM images of a DCM/AlPO₄-5 membrane made via the method in section 2.3.5 are shown in Figs. 4.4, 4.5, and 4.6. Figs. 4.4 and 4.5 show cross-sectional views of a broken edge of the membrane. From these images it can be seen that the AlPO₄-5 layer is an highly intergrown, columnar layer of approximately 16 µm thickness, with the c-axis of the crystals aligned perpendicular to the substrate surface. The orientation of the AlPO₄-5 layer appears to decrease with distance from the substrate surface, with the outermost 3 µm of the film appearing to be somewhat randomly ordered relative to the inner 13 µm. As there is no separation between the zeolite layer and the PAA substrate it is difficult to determine
4.3. Synthesis of DCM@AlPO$_4$-5

Figure 4.5: SEM image of a broken edge of a DCM/AlPO$_4$-5 membrane at 3700 magnification.

The penetration depth of the AlPO$_4$-5 into the PAA. It appears, however, from the SEM images that the channel structure of the PAA directs the growth of the AlPO$_4$-5, due to the highly ordered nature of the AlPO$_4$-5 layer at the substrate surface.

Fig. 4.6 shows a view of the surface of the same membrane, showing the poorly aligned layer at the surface.

4.3.5 Luminescence Measurements

Many studies have discussed the use of AlPO$_4$-5 as a host for optically active materials, which can be oriented within the nanochannels [102, 82, 100, 103, 104, 59, 83]. These composites, however, are not useful for appli-
cations without a method of aligning the host crystals relative to the incident laser light, in order to facilitate laser activity from the AlPO$_4$-5 [107]. AlPO$_4$-5/dye composites in which laser activity has been demonstrated so far have used a single crystal, glued to a substrate to force orientation with the c-axis of the crystal perpendicular to the Nd/YAG laser used as the pump [104, 83]. A much easier method, however, is to force the crystals to grow in a preferred orientation. Luminescence measurements on membranes of this type are shown in the following sections.
4.3. Synthesis of DCM@AlPO$_4$-5

4.3.5.1 Photographs

Fig. 4.7 compares an undoped AlPO$_4$-5 composite membrane (left) with an AlPO$_4$-5 membrane doped with the laser dye DCM (right) under UV light. Both samples were prepared using Whatman Anodiscs as the PAA template. The high degree of fluorescence of the doped membrane can clearly be seen in this image.

Figure 4.7: An undoped composite membrane (left) next to a composite membrane doped with DCM fluorescing under UV (right).

4.3.5.2 Spectra

Fig. 4.8 shows the emission spectrum for a membrane prepared using a Whatman Anodisc via the method described in 2.3.5. This spectrum was recorded on an Ocean Optics Fibre Optics UV/VIS/IR spectrometer, with the 489 nm Line from an Argon Ion Laser as the excitation source. This spectrum correlates to that observed for DCM in solution [132] (see Fig. 4.9 for an image from this reference). While this spectrum does not prove laser activity, bleaching was not observed, suggesting that the laser dye is in fact incorporated into the pores of the zeolite (and was thus unable to
be destroyed by the laser), and previous research [104, 83] suggests that if this is the case, then the DCM molecules will be highly aligned within the AlPO$_4$-5, and thus would exhibit laser activity.

Figure 4.8: Emission Spectrum for a DCM/AlPO$_4$-5 composite membrane at 298 K and $\lambda_{\text{exc}} = 489$ nm.

4.3.6 Procedure for determining incorporation of DCM into composite AlPO$_4$-5/dye membranes

Once DCM/AlPO$_4$-5 membranes had been successfully prepared, a sample was made to check whether the DCM was in fact incorporated into the crystal structure of the AlPO$_4$-5 or whether it was just clinging to the surface of the membrane. First an AlPO$_4$-5 membrane was prepared via the standard synthesis method described in 2.3.2. Following the normal washing and drying of the membrane DCM, H$_2$O and ethanol (0.00025 mol
DCM, 0.138 mol ethanol, and 2 mol H₂O) were combined to mimic the synthesis conditions in section 2.3.5. The sample was then floated on the surface of this solution and sealed within the Teflon lined autoclave for ‘crystallisation’ at 180°C. The sample was then washed and refluxed in ethanol as per 2.3.5 until no more dye was observed to be removed.

Unlike the samples in which DCM was incorporated during the crystallisation, this sample showed no observable fluorescence under UV, supporting the idea that in the samples discussed above, DCM is actually incorporated into the AlPO₄-5, rather than just physically adsorbed onto the surface of the membrane.
4.4 Discussion

The syntheses discussed in this chapter produces highly aligned membranes of AlPO$_4$-5 within the pores of an anodic alumina substrate by combining a conventional hydrothermal pre-treatment with microwave crystallisation within a teflon lined microwave autoclave. This autoclave was designed and made expressly for this project, and allows easy control of the heating rate, time and synthesis temperature.

This synthesis avoids the problems associated with the synthesis discussed in chapter 3, namely the damage done to the PAA substrate by the 24 hour crystallisation, as the crystallisation can be achieved in 10 minutes, a more than 100 fold reduction in the crystallisation time. As crystallisation is so fast, incorporation into the zeolite composite membrane of the laser dye DCM (4-dicyanomethylene-2- methyl-6-(p(dimethylamino)styryl)-4H-pyran) is also made possible.

Testing shows that the fluorescence observed from these membranes is highly likely to be from DCM incorporated into the zeolite, rather than material physically adsorbed onto the surface of the membrane, and previous work by Schuth et al. [104] suggests that such composites should demonstrate laser activity, thus showing promise for use in non-linear optical applications. Further testing is required to fully test the non-linear optical activity of these composite membranes.
Chapter 5

Conclusions and Future Work

The aims of this project were to demonstrate the ability to produce a composite material incorporating crystallographically aligned crystals of a zeolite. In turn, the zeolite should contain molecular sized channels aligned such that the composite material could contain dye molecules with non-linear optical properties highly preferentially aligned within the channels of the zeolite.

These aims were fully realised, as the syntheses discussed in this thesis allowed the formation of highly aligned AlPO$_4$-5 membranes, which could then be doped with the laser dye DCM to produce DCM@AlPO$_4$-5 membranes. The first synthesis discussed in chapter 3 used a conventional oven as the heating source and membranes produced in this manner, while highly aligned, have some drawbacks. When Whatman Anodisc membrane filters are used as the template for this synthesis they are degraded to the point where they lack mechanical stability and are therefore unable to be used in any application where any degree of mechanical strength is required. Secondly, the synthetic conditions are too hostile to
allow incorporation of organic dyes into the membranes during synthesis. This made it necessary to design a synthetic procedure that would allow achievement of the second aim of this work, that of incorporating molecules with non-linear optical properties (in this case, the organic dye DCM) into the AlPO$_4$-5 membrane, via an *in-situ* inclusion.

In order to overcome these challenges the crystallisation time needed to be greatly reduced, requiring that the method of heating used for crystallisation be changed to microwave heating. As a microwave safe pressure vessel and a microwave in which the temperature, time and heating rate could be controlled were not available it was necessary to design a microwave autoclave, and modify an existing laboratory microwave, in order to carry out a microwave synthesis. Once this microwave autoclave had been fabricated and the synthetic conditions required determined, highly aligned membranes of AlPO$_4$-5 within the pores of an anodic alumina substrate were produced by combining a conventional hydrothermal pre-treatment with microwave crystallisation within the teflon lined microwave autoclave. This avoided the problems associated with the synthesis discussed in chapter 3, namely the damage done to the PAA substrate by the 24 hour crystallisation, as microwave crystallisation was achieved in 10 minutes, a more than 100 fold reduction in the crystallisation time. As crystallisation was so fast, incorporation into the zeolite composite membrane of the laser dye DCM (4-dicyanomethylene-2-methyl-6-(p(dimethylamino)styryl)-4H-pyran) was also made possible, realizing the second goal of this research.

Preliminary testing of the composite membranes prepared in this man-
ner shows that the fluorescence observed from these membranes is highly likely to be from DCM incorporated into the zeolite, rather than material physically adsorbed onto the surface of the membrane, and previous work by Schuth et al. [104] suggests that such composites should demonstrate laser activity, thus showing promise for use in non-linear optical applications. Further work is, however, required to fully test the properties of these membranes.

5.1 Recommendations for Future Work

On the basis of results obtained during the research undertaken for this thesis, the following recommendations for future research can be made:

- Testing of the laser activity of the AlPO$_4$-5/DCM composite membranes. This requires the ability to focus on a single AlPO$_4$-5 crystal within the membrane, and ensure its alignment relative to both the Nd:YAG laser used as the pump, and the detector.

- Preparation of composite membranes containing aluminophosphates with smaller pore sizes which would be suitable for gas filtration. An example of a suitable aluminophosphate is AlPO$_4$-18, which has a pore size of 3.8 Å. Attempts were made (see Table B.9) during this thesis to crystallise AlPO$_4$-18 within a PAA substrate; however, although it was possible to synthesize bulk AlPO$_4$-18 in a manner which was not hostile to the PAA membrane used, when the synthesis was applied to a PAA membrane, the product that crystallised within the membrane was the more stable aluminophosphate AlPO$_4$-
5.

- Preparation of membranes which utilise other laser dyes, either those previously incorporated into bulk AlPO$_4$-5 or similar long, linear, uncharged dyes, in order to produce tunable microlasers.
Appendix A

Microwave-Safe Pressure Vessel

The microwave-safe pressure vessel discussed in Chapter 4 has several specific requirements. The container must be sealed and able to withstand the expected operating temperatures and pressures and must be sufficiently chemically resistant. Also, due to the powerful microwave field, any electrically conductive components must have a geometry free of inductive arc gaps.

The design methodology is to use a very strong outer jacket with a mechanically weaker but chemically more resistant inner sleeve. The outer jacket was fabricated from solid, interface free PEEK GF30 (polyetheretherketone reinforced with 30% glass fibre) from DOTMAR Engineering Plastics Limited. PEEK was chosen due to its good mechanical characteristics, temperature resistance (PEEK has a continuous operating temperature of 250 °C, significantly higher than the working temperature of 180 °C required for the crystallisation of AlPO₄-5) and chemical resistance (although it is not directly exposed to the synthesis liquor it may come into contact with it, and thus must be able to withstand contact with the chem-
icals used during the synthesis. The liner of the bomb is PTFE, which has excellent chemical resistance and a maximum operating temperature of 260 °C.

Internal Volume of the Teflon liner is

\[
V = \frac{\pi D^2 h}{4}
\]

\[
= 68.5 \text{ cm}^3
\]

The working temperature is 180 °C and at this temperature the expected pressure within the chamber is

\[
P = 7514 \text{ mmHg}
\]

\[
= 145.3 \text{ psi}
\]

\[
= 10.018 \times 10^6 \text{ Nm}^{-2}
\]

\[
= 9.884 \text{ atmospheres}
\]

The thermocouple used was a K-type thermocouple, attached to a Shinho temperature controller. This was inserted into the bomb via a hole in the top, which was sealed with ‘gasketseal’ silicone gasket sealant. This hole was counterbored in a conical fashion from the interior surface so that as the internal pressure of the bomb increased, the silicone sealant was forced further down the cone, increasing the strength of the seal. The hole was set slightly off centre, in order to allow the Teflon float to float in the centre of the bomb.
The lid of the bomb was designed so that the PEEK exterior was flush with the lid of the Teflon liner, forming a tight seal. The silicone sealant formed a slight bulge where the temperature probe entered the liner, sealing the hole.

The bomb was held closed by 6 stainless steel bolts. Although these are metal, they do not introduce electrical arcing. The distance between bolts is sufficiently large that any induced potentials or needle point potentials are much smaller than the break down potential between the bolts. One other consideration is the possibility of arcing between the threads on any one of the bolts. However, the voltages induced within the semi-closed loop of the thread are small and are effectively shorted by the body of the bolt itself.

Figure A.1: Photograph of the Microwave-safe pressure vessel.
Appendix B

Summary of all samples made.

Conventional Oven synthesis of AlPO₄-5 within Whatman Anodiscs

The initial objective of this research was to prepare membranes composed of AlPO₄-5 within the pores of Whatman PAA membranes via a conventional oven synthesis. Following this the intention was to incorporate laser dyes into the zeolite via \textit{in-situ} inclusion. The initial goal of preparing AlPO₄-5 membranes was achieved, but this synthesis had several drawbacks.
Table B.1: Samples made during the design of a synthesis for AlPO$_4$-5 membranes using a conventional oven as the heating source.

<table>
<thead>
<tr>
<th>Name</th>
<th>Synthetic Details</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC1</td>
<td>Bulk AlPO$_4$-5 by a method which uses a combination of the techniques in Girnus et. al [82] and Wilson and Flanigen [74] in order to avoid the use of HF and use the available amine templates. Uses tetraethylammonium hydroxide as the template.</td>
<td>No crystals formed, formed a clear solution even after extended crystallization in the oven at 180°C.</td>
</tr>
<tr>
<td>LC2</td>
<td>As for LC1 but using tetramethylammonium hydroxide as the template.</td>
<td>Formed a clear viscous gel, despite extended crystallisation.</td>
</tr>
<tr>
<td>LC3</td>
<td>As for LC1 but using tetra(n-butyl) ammonium hydroxide as the template.</td>
<td>Formed a clear viscous gel, despite extended crystallisation.</td>
</tr>
<tr>
<td>LC6</td>
<td>Preparation with tetrabutylammonium fluoride (to try to combine template with source of fluoride to remove the need for HF)</td>
<td>Formed a non-porous aluminophosphate.</td>
</tr>
<tr>
<td>LC7</td>
<td>Sample made with alphabond. Added a 90°C pretreatment step [118] to facilitate crystallization. Also changed order of addition of reactants, made a slurry of the aluminium source and added the phosphoric acid followed by the amine dropwise to that. This prevents a thick viscous gel from forming, which appears to hinder crystallization.</td>
<td>Bulk AlPO$_4$-5</td>
</tr>
<tr>
<td>LC8</td>
<td>Same as LC7, but using using Aluminium isopropoxide as the aluminium source.</td>
<td>Bulk AlPO$_4$-5</td>
</tr>
<tr>
<td>LC9</td>
<td>Same as LC7 but with an anodisc added.</td>
<td>Anodisc dissolved.</td>
</tr>
<tr>
<td>LC10</td>
<td>Same as LC9, but anodisc added after 90°C step and using extra water (200 eq.) to try to prevent dissolution of the anodisc</td>
<td>Anodisc dissolved.</td>
</tr>
<tr>
<td>Name</td>
<td>Synthetic Details</td>
<td>Results</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>LC11</td>
<td>Same as LC10, but using a doughnut shaped piece of teflon to hold the anodisc at the liquid/vapor interface - this may facilitate c-axis crystallization. Because of upward fluid flow, the crystallites are presumed to behave like logs floating in a river and pack in order. [29]</td>
<td>AlPO₄-5, but poorly aligned. Tried to remove the template by calcination of the anodisc at 550 °C, but the anodisc blackened and curled.</td>
</tr>
<tr>
<td>LC14</td>
<td>Same as LC11, but with anodisc ‘right’ way up(as taken from the box). The ‘top’ and ‘bottom’ of the anodiscs look different under SEM, so this sample was made to see if this makes any difference to synthesis.</td>
<td>This sample and LC15 showed no discernable difference. According to XRD the degree of alignment of these samples was approx. 60 (taken as the ratio of the [210]/[002] peak). SEM showed that the anodisc was badly degraded during synthesis.</td>
</tr>
<tr>
<td>LC15</td>
<td>Same as LC11 but with anodisc ‘upside down’.</td>
<td>See above.</td>
</tr>
<tr>
<td>LC17</td>
<td>Repeat of LC11</td>
<td>Same as LC11</td>
</tr>
<tr>
<td>LC18</td>
<td>The same as LC17, but with double the water (400eq.) -----------------------------**Standard Synthesis**---</td>
<td>AlPO₄-5 with a degree of alignment of ~110.</td>
</tr>
<tr>
<td>LC19</td>
<td>The same as LC17, but with triple the water (600eq.)</td>
<td>Completely amorphous.</td>
</tr>
<tr>
<td>LC20</td>
<td>Repeat of LC11, but with a layered Teflon float designed to prevent the anodisc from slipping off when the bomb was moved.</td>
<td>This Teflon float was heavier than the simple doughnut shaped one, and sank during synthesis. The AlPO₄-5 membrane was poorly aligned.</td>
</tr>
</tbody>
</table>

Table B.1: Continued
Summary of all samples made.

Table B.1: Continued

<table>
<thead>
<tr>
<th>Name</th>
<th>Synthetic Details</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC23</td>
<td>Standard synthesis with the pH adjusted to 6 after the 90°C pretreatment with NH₄OH in order to make the synthesis liquor less corrosive to the anodic alumina.</td>
<td>The product was aluminium ammonium phosphate.</td>
</tr>
<tr>
<td>LC25</td>
<td>Standard synthesis with the pH adjusted to 6 after the pretreatment with NaOH</td>
<td>Formed a condensed phase aluminophosphate.</td>
</tr>
<tr>
<td>LC55</td>
<td>AlPO₄-5 within an anodisc, but with a vacuum infiltration step before crystallization in order to try to force the AlPO₄-5 to penetrate all the way through the pores of the PAA membrane.</td>
<td>Mostly amorphous.</td>
</tr>
<tr>
<td>LC56</td>
<td>As for LC55, but sample was dried in the oven at 70°C after vacuum infiltration and before crystallization.</td>
<td>Mostly amorphous.</td>
</tr>
<tr>
<td>LC62-LC66</td>
<td>Repeat of LC18 (standard AlPO₄-5 prep.) to test reproducibility.</td>
<td>As for LC18</td>
</tr>
<tr>
<td>LC75</td>
<td>Standard AlPO₄-5 prep. with reduced crystallization time (8 hours).</td>
<td>Basically amorphous - needs a longer crystallization.</td>
</tr>
<tr>
<td>LC76</td>
<td>Standard AlPO₄-5 prep. with reduced crystallization time (16 hours).</td>
<td>Better than LC75, but still inferior to membranes made with a 24 hour crystallization.</td>
</tr>
<tr>
<td>LC77</td>
<td>Standard AlPO₄-5 prep. with reduced ratio of Al₂O₃ (10% deficit), as dissolution of the anodisc may cause a higher local concentration of Al at the membrane surface.</td>
<td>Highly aligned, highly crystalline sample.</td>
</tr>
<tr>
<td>LC83</td>
<td>As for LC77 to test reproducibility.</td>
<td>As for LC77</td>
</tr>
<tr>
<td>LC84</td>
<td>As for LC77 to test reproducibility.</td>
<td>As for LC77</td>
</tr>
</tbody>
</table>
Attempts to synthesise AlPO$_4$-5 microlaser membranes.

Various laser dyes prepared by Andrew Kay of Industrial Research Limited were trialed using the above synthesis as a starting point. None of these dyes proved to be suitable, either decomposing during the 180 °C crystallization or simply not being incorporated. These dyes were selected to fit the following criteria:

- Very stable
- Uncharged (protonated groups can interfere with crystal growth, although some charged dyes have successfully been incorporated into AlPO$_4$-5)
- Relatively long and linear (the unit cell of AlPO$_4$-5 has a=13.8 Å, c=8.6 Å and channel width 7.3 Å, but it is not necessary for the dye to conform to this as it can be encapsulated in defects in the crystal structure, c.f. DCM).
- Dyes which have been previously been incorporated into bulk AlPO$_4$-5 are Coumarin 7, Coumarin 466, pyridine 2 and DCM.

Section 2.3.3 gives details of the structures of the laser dyes used.
Table B.2: Attempts to synthesise AlPO$_4$-5 microlaser membranes using conventional oven heating.

<table>
<thead>
<tr>
<th>Name</th>
<th>Synthetic Details</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC29</td>
<td>Standard AlPO$_4$-5 syntheses but with laser dyes supplied by Andrew Kay added.</td>
<td>Dyes decomposed during crystallization.</td>
</tr>
<tr>
<td>LC30</td>
<td>Standard AlPO$_4$-5 syntheses but with laser dyes supplied by Andrew Kay added.</td>
<td>Dyes decomposed during crystallization.</td>
</tr>
<tr>
<td>LC31</td>
<td>Standard AlPO$_4$-5 synthesis but with DCM added.</td>
<td>DCM had partially decomposed during the synthesis, and the crystals formed were berlinite. (A condensed phase AlPO$_4$)</td>
</tr>
<tr>
<td>LC32</td>
<td>Standard AlPO$_4$-5 synthesis but with the Katritsky laser dye added.</td>
<td>The dye had partially decomposed during the synthesis, and the crystals formed were berlinite.</td>
</tr>
<tr>
<td>LC36</td>
<td>Standard AlPO$_4$-5 prep. but with the Katritsky laser dye added. (twice the water of LC32)</td>
<td>Poor surface covering and poorly aligned, but crystalline (AlPO$_4$-5). Dye does not appear to be incorporated.</td>
</tr>
<tr>
<td>LC37</td>
<td>Standard AlPO$_4$-5 prep. but with DCM added. (twice the water of LC31)</td>
<td>Poor surface covering and poorly aligned, but crystalline (AlPO$_4$-5). Dye does not appear to be incorporated.</td>
</tr>
<tr>
<td>LC42</td>
<td>As for LC40 (Katritsky dye) but with twice the dye (0.08 g)</td>
<td>Dye decomposed the anodisc was badly decomposed.</td>
</tr>
<tr>
<td>LC44</td>
<td>As for LC42, but using only a minimum of material in the bomb for crystallization to try to minimise the damage to the anodisc.</td>
<td>Poorly crystalline, very little alignment. Dye not incorporated.</td>
</tr>
<tr>
<td>LC47</td>
<td>AlPO$_4$-5 with DCM added and using aluminium isopropoxide.</td>
<td>Anodisc dissolved.</td>
</tr>
<tr>
<td>LC48</td>
<td>AlPO$_4$-5 with a dye synthesized by Andrew Kay added.</td>
<td>Dye had completely decomposed.</td>
</tr>
<tr>
<td>LC49</td>
<td>AlPO$_4$-5 with a dye synthesized by Andrew Kay added.</td>
<td>Dye had completely decomposed.</td>
</tr>
</tbody>
</table>
Attempts were also made to dope these AlPO$_4$-5 membranes with Europium, to form photoluminescent membranes. This was not successful. These experiments are summarised below.

Table B.3: Attempts to dope AlPO$_4$-5 membranes with europium.

<table>
<thead>
<tr>
<th>Name</th>
<th>Synthetic Details</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC29</td>
<td>Standard AlPO$_4$-5 syntheses but with laser dyes supplied by Andrew Kay added.</td>
<td>Dyes decomposed during crystallization.</td>
</tr>
<tr>
<td>LC68</td>
<td>AlPO$_4$-5 in an anodisc doped with 1% europium nitrate</td>
<td>Good membrane, but sample did not luminesce under UV and EDS was unconclusive as to whether europium was incorporated.</td>
</tr>
<tr>
<td>LC70</td>
<td>AlPO$_4$-5 in an anodisc doped with 5% europium nitrate</td>
<td>Poorly crystalline and contained impurity phases, sample did not luminesce under UV.</td>
</tr>
<tr>
<td>LC78</td>
<td>Sample with 10% europium.</td>
<td>Very poor sample.</td>
</tr>
<tr>
<td>LC80</td>
<td>AlPO$_4$-5 in an anodisc doped with 5% europium nitrate</td>
<td>Very poor sample.</td>
</tr>
<tr>
<td>LC81</td>
<td>Repeat of LC78</td>
<td>Europium did not appear to be incorporated.</td>
</tr>
<tr>
<td>LC86</td>
<td>AlPO$_4$-5 doped with Europium via the method in Yan et al. [133] but crystallized in a conventional oven (not microwave).</td>
<td>Not AlPO$_4$-5, other condensed phase aluminophosphates.</td>
</tr>
</tbody>
</table>
Conventional Oven Synthesis of AlPO$_4$-5 within Porous Anodic Alumina prepared by Alexander Kirchner of Industrial Research Limited.

Although the conventional oven syntheses using Whatman Anodiscs as the alignment template yielded highly aligned AlPO$_4$-5 membranes, the Anodisc was corroded during the synthesis so that the final product was very brittle and unlikely to be suitable for any gas filtration application. In order to overcome this, samples were crystallized using PAA prepared by Alexander Kirchner of Industrial Research, which was more ordered and thermally/chemically stable, as the template.

Due to the higher stability of the Kirchner PAA, these syntheses were carried out using only 200eq. H$_2$O and a 1:1 ratio of Al:P (as the membrane did not partially dissolve as the anodiscs did).
Table B.4: AlPO$_4$-5 membranes prepared on highly ordered PAA.

<table>
<thead>
<tr>
<th>Name</th>
<th>Synthetic Details</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC29</td>
<td>Standard AlPO$_4$-5 syntheses but with laser dyes supplied by Andrew Kay added.</td>
<td>Dyes decomposed during crystallization.</td>
</tr>
<tr>
<td>LC79</td>
<td>Sample prepared with PAA made via the method in Kirchner et al. [32] (anodized in sulfuric acid, pore size of 30nm). PAA membrane was poor quality.</td>
<td>Poor sample.</td>
</tr>
<tr>
<td>LC82</td>
<td>Repeat of LC79 with a slightly higher quality PAA membrane. (anodized in sulfuric acid, pore size of \sim30 nm)</td>
<td>Almost x-ray amorphous. The pores of these membranes may be too small to allow the AlPO$_4$-5 crystallites formed during the 90$^\circ$C pretreatment to enter.</td>
</tr>
<tr>
<td>LC91</td>
<td>Standard prep in PAA membrane anodized in oxalic acid (pore size 50nm) made by Kirchner [32].</td>
<td>Good sample.</td>
</tr>
<tr>
<td>LC93</td>
<td>Repeat of LC91</td>
<td>Good sample.</td>
</tr>
<tr>
<td>LC94</td>
<td>Repeat of LC91</td>
<td>Good sample.</td>
</tr>
<tr>
<td>LC95</td>
<td>Repeat of LC91</td>
<td>Good sample.</td>
</tr>
<tr>
<td>LC98</td>
<td>Repeat of LC91</td>
<td>Good sample. Template later removed at 300$^\circ$C under vacuum overnight. After this step XRD showed that the zeolite had not been damaged.</td>
</tr>
<tr>
<td>LC99</td>
<td>Repeat of LC91</td>
<td>Good sample.</td>
</tr>
<tr>
<td>LC100</td>
<td>Repeat of LC91</td>
<td>Good sample.</td>
</tr>
</tbody>
</table>
Microwave Crystallisation of AlPO$_4$-5 within Porous Anodic Alumina

Although using the Kirchner PAA allowed the crystallisation of mechanically sound, highly aligned membranes of AlPO$_4$-5 using a conventional oven as the heating source, the Kirchner PAA had the disadvantage of being costly and not easily available in larger quantities; therefore it is preferable that these membranes be made using Whatman anodiscs. Also, after the experiments with laser dyes it became apparent that in order to achieve my goal of creating AlPO$_4$-5 microlaser membranes it would be necessary to crystallize my membranes in a microwave oven, to ensure that the laser dyes incorporated into the membranes did not decompose during synthesis.

At this point it was necessary to design a Teflon lined microwave autoclave in which the temperature, time, and heating rate could be controlled. The design of this autoclave (and modifications to the microwave with which it was used) are discussed in appendix A. The experiments in which this microwave autoclave was used are discussed below. Firstly, my standard synthetic procedure needed to be modified in order to be suitable for microwave crystallization.
Table B.5: AlPO$_4$-5 membranes using a microwave as the heating source.

<table>
<thead>
<tr>
<th>Name</th>
<th>Synthetic Details</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC101</td>
<td>Bulk AlPO$_4$-5 microwave prep. With PEEK autoclave. Similar to the prep in Yan et al. [133]</td>
<td>Not a great sample, only moderately crystalline and contained impurity phases.</td>
</tr>
<tr>
<td>LC102</td>
<td>As for LC101 but with an anodisc floated on a Teflon float and a 20 minute crystallization</td>
<td>An OK sample.</td>
</tr>
<tr>
<td>LC103</td>
<td>As for LC101, but using more recently purchased HF, 130 eq. H$_2$O and pseudoboehmite.</td>
<td>A moderately good sample.</td>
</tr>
<tr>
<td>LC104</td>
<td>As for LC101 but with less water.</td>
<td>Similar to LC103</td>
</tr>
<tr>
<td>LC105</td>
<td>2 step microwave heating, similar to the synthesis in Tsai et al. [29]</td>
<td>Lots of amorphous material on surface at the liquid interface, almost nothing on the top surface.</td>
</tr>
<tr>
<td>LC109</td>
<td>Sample crystallized in the microwave, same as the conventional oven crystallization but with the addition of HF and a pretreatment performed in the conventional oven. 20 minutes crystallization.</td>
<td>XRD showed good alignment.</td>
</tr>
<tr>
<td>LC110</td>
<td>As for LC109 but with 10 min crystallization. …… Standard Microwave Synthesis</td>
<td>Similar results to LC109 using XRD, looks more crystalline on SEM.</td>
</tr>
</tbody>
</table>
Summary of all samples made.

Once this method had been devised, further attempts were made to incorporate the laser dye DCM into the membranes. These attempts were successful.

Table B.6: Microwave samples doped with DCM.

<table>
<thead>
<tr>
<th>Name</th>
<th>Synthetic Details</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC114</td>
<td>Microwave sample with 0.05:1 DCM:Al. 10 minute crystallization.</td>
<td>Sample luminesces under UV. XRD shows well aligned AlPO$_4$-5.</td>
</tr>
<tr>
<td>LC115</td>
<td>As for LC114, but with more ethanol to dissolve the DCM.</td>
<td>Very similar in quality to LC114.</td>
</tr>
<tr>
<td>LC116</td>
<td>As for LC115</td>
<td>As for LC114/LC115</td>
</tr>
</tbody>
</table>
After synthesis of these AlPO₄-5 membranes doped with DCM, samples were made to check whether the DCM was in fact incorporated into the zeolite, or just physically adsorbed onto the surface of the membrane. These experiments are summarised below.

Table B.7: Samples prepared to check whether DCM was incorporated into the membranes in Table B6.

<table>
<thead>
<tr>
<th>Name</th>
<th>Synthetic Details</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC117</td>
<td>Standard conventional oven hydrothermal AlPO₄-5 sample made with an anodisc.</td>
<td>Prepared to check whether dye is incorporated into LC114 or just clinging to the surface of the membrane.</td>
</tr>
<tr>
<td>LC119</td>
<td>Experiment with LC117 to see if DCM will cling to the surface of an AlPO₄-5/PAA membrane. Appropriate amounts of DCM, H₂O and ethanol were combined to mimic the synthesis conditions in LC114. LC117 was sealed in a Teflon lined autoclave and left at 180°C for 2 hours then quenched, opened, washed and refluxed in ethanol until no more dye was observed to be removed.</td>
<td>Observable fluorescence under UV, unlike LC114.</td>
</tr>
</tbody>
</table>
Attempts were also made to incorporate Europium into the microwave AlPO$_4$-5 membranes. Initial attempts were unsuccessful, and further attempts were not made due to time constraints.

Table B.8: Europium doped microwave samples.

<table>
<thead>
<tr>
<th>Name</th>
<th>Synthetic Details</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC111</td>
<td>Europium doped microwave sample, 20 minute crystallization.</td>
<td>X-ray amorphous. SEM showed amorphous material on the surface contained all the europium, i.e. it was not incorporated into the AlPO$_4$-5 (and besides which, there wasn’t much AlPO$_4$-5).</td>
</tr>
<tr>
<td>LC113</td>
<td>As for LC111 but 10 minute crystallization.</td>
<td>As for LC111</td>
</tr>
</tbody>
</table>
Attempts to Synthesize Zeolite Membranes containing other Aluminophosphates

Attempts were made to synthesize several smaller pore zeolite membranes. It was found that these zeolites were much more difficult to synthesize within PAA as

- AlPO$_4$-5 is more stable, so often the syntheses would yield the zeolite in question for the bulk, but AlPO$_4$-5 would crystallize within the membrane
- The synthetic conditions required for these syntheses proved to be very corrosive to the PAA membranes used, as these syntheses typically use higher Al$_2$O$_3$:P$_2$O$_5$ ratios.
Table B.9: Attempts to synthesise small pore AlPO₄-5.

<table>
<thead>
<tr>
<th>Name</th>
<th>Synthetic Details</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC21</td>
<td>Synthesis to try to prepare AlPO<sub>4</sub>-18. Used a published synthesis from</td>
<td>Amorphous.</td>
</tr>
<tr>
<td></td>
<td>Verified Syntheses of Zeolitic Materials [134]</td>
<td></td>
</tr>
<tr>
<td>LC22</td>
<td>Experiment to try to prepare AlPO<sub>4</sub>-18. As for LC21 but using pseudobeoehmite</td>
<td>A non-porous aluminophosphate</td>
</tr>
<tr>
<td>LC24</td>
<td>AlPO<sub>4</sub>-18 following the procedure in Vilaseca et al. [135]</td>
<td>Mostly amorphous, a very small amount of</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AlPO<sub>4</sub>-18.</td>
</tr>
<tr>
<td>LC26</td>
<td>As for LC24, but using Aluminum sec-Butoxide as the aluminium source.</td>
<td>Mostly amorphous.</td>
</tr>
<tr>
<td>LC27</td>
<td>Repeat of LC26 with an anodisc added. Crystallized for 24 hours</td>
<td>Anodisc dissolved.</td>
</tr>
<tr>
<td>LC28</td>
<td>As for LC27, but crystallized for 48 hours</td>
<td>Anodisc dissolved.</td>
</tr>
<tr>
<td>LC43</td>
<td>An Anodisc coated in TiO<sub>2</sub> using a precursor provided by Tim Kemmitt</td>
<td>Anodisc completely dissolved</td>
</tr>
<tr>
<td></td>
<td>of IRL. This was intended to protect the anodisc from the corrosive AlPO<sub>4</sub>-18 precursor. Attempts were then made to crystallize AlPO<sub>4</sub>-18 within the anodisc.</td>
<td></td>
</tr>
<tr>
<td>LC45</td>
<td>Anodisc prepared with TiO<sub>2</sub> coating for SEM</td>
<td>It was impossible to see using SEM whether there was a coating present or not, and if so whether it completely coated the anodisc (including in the pores).</td>
</tr>
<tr>
<td>LC46</td>
<td>As for LC43 but with a thicker coating of TiO<sub>2</sub></td>
<td>Anodisc dissolved.</td>
</tr>
<tr>
<td>LC50</td>
<td>Precursor solution for AlPO<sub>4</sub>-18.</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Synthetic Details</td>
<td>Results</td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>LC51</td>
<td>Anodisc crystallized in a minimum amount of LC50</td>
<td>Anodisc completely dissolved.</td>
</tr>
<tr>
<td>LC52</td>
<td>Anodisc into which LC50 had been incorporated, placed on a Teflon float in the vapour above water in a bomb.</td>
<td>Amorphous.</td>
</tr>
<tr>
<td>LC57</td>
<td>Attempt to crystallize AlPO(_4)-11 in an anodisc using a published route.</td>
<td>Anodisc dissolved and product was not crystalline.</td>
</tr>
<tr>
<td>LC58</td>
<td>Attempt to crystallize AlPO(_4)-18</td>
<td>Bulk powder was AlPO(_4)-18, anodisc dissolved.</td>
</tr>
<tr>
<td>LC59</td>
<td>Attempt to crystallize AlPO(_4)-52 via a published route</td>
<td>Actually crystallized as poorly aligned, poorly crystalline AlPO(_4)-5</td>
</tr>
<tr>
<td>LC60</td>
<td>Modified attempt to crystallize AlPO(_4)-52 using pseudoboehmite.</td>
<td>Anodisc dissolved.</td>
</tr>
<tr>
<td>LC61</td>
<td>Modified attempt to crystallize AlPO(_4)-52 using aluminium iso-propoxide.</td>
<td>Anodisc dissolved.</td>
</tr>
</tbody>
</table>
Summary of all samples made.
Appendix C

Methods used for Template Removal from Zeolites

Calcination - This is the most common method used. The details below are given as an example of how this technique may be applied to AlPO₄-5.

- Samples are calcined in O₂, heating slowly (2 °C min⁻¹) to 550 °C, held there for 30 hours and slowly cooled [136].

Photochemical Template removal

- Materials are exposed to ultraviolet radiation between 260-180 nm in O₂ for 20-50 hr with the UV source approx. 2 cm from the sample. UV is produced by a low or med pressure Hg discharge lamp in a quartz envelope in a closed chamber under ambient conditions [124].

- ZSM-5 was treated for 30 mins in O₂ mixture with 50 g/m³ of ozone at 200 °C. Longer times are needed for samples with higher Al contents [126].
Methods used for Template Removal from Zeolites

Microwave Irradiation

- Sample is irradiated at low temperature but heating to 550 °C is still required [127].

Vacuum Removal Method

- MCM-41 was heated @ 200-250 °C for several hours under vacuum [130].

Solvent Extraction

- Template was removed from Al-MCM-41 by:
 - Solvent extraction with 0.75 M HCl in 1:1 ethanol:heptane for 40 hours
 - Solvent extraction with 0.05 M H₂SO₄/ethanol for 1 hour @ 0 °C [125].

Supercritical Fluid Extraction

- Template was removed from Al-MCM-41 via supercritical fluid extraction @ 100 bar @ 100 °C for 15 minutes using supercritical CO₂ modified with 20% MeOH [125].
Appendix D

Alphabond 300 Materials Safety Data Sheet
1. IDENTIFICATION OF THE SUBSTANCE/PREPARATION AND THE COMPANY/UNDERTAKING

Product code: 834

Product name	Alphabond
Synonyms	Alphabond 300
Manufacturer, importer, supplier	Almatis GmbH
	Dill-Prede-Straße 37
	60439 Frankfurt am Main Germany
	Almatis GmbH
	501 West Park Road Leetsdale, PA 15056 USA
	Almatis GmbH
	Giulinistraße 2
	67065 Ludwigshafen Germany
	Almatis Limited
	1815-2 Azu Nagano
	Oaza Nagano, Iwakunie City
	Yamaguchi Pref 740-0045 Japan
	Qingdao Almatis Co., Ltd.
	Box 150, Sunshine Tower
	81 Hongkong Middle Road
	Qingdao 266071 P. R. China

| Emergency telephone number | CHEMTREC: +1-703-527-3887 +1-800-424-9300
| | Almatis: 501-776-4677

| Use of the Substance/Preparation | Binder
| Additional information available from: | www.almatis.com

2. COMPOSITION/INFORMATION ON INGREDIENTS

<table>
<thead>
<tr>
<th>CAS</th>
<th>Chemical Name</th>
<th>% Weight</th>
<th>EINECS - European Union*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1333-64-2</td>
<td>Aluminium oxide (Al2O3), hydrate</td>
<td>91.5-95.0</td>
<td>N/A</td>
</tr>
</tbody>
</table>

* EINECS - European Union - European Inventory of Existing Commercial Chemical Substances (EINECS)

3. HAZARDS IDENTIFICATION

| Emergency Overview | Non-combustible
| Eye contact | Contact with eyes may cause irritation
| Skin contact | May cause skin irritation
| Inhalation | May cause irritation of respiratory tract
| Ingestion | Ingestion may cause irritation to mucous membranes
| Aggravated Medical Conditions | Asthma
| | Lung irritation

1 of 6
4. FIRST AID MEASURES

<table>
<thead>
<tr>
<th>General advice</th>
<th>● Show the safety data sheet to the doctor in attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skin contact</td>
<td>● Wash off immediately with soap and plenty of water removing all contaminated clothes and shoes</td>
</tr>
<tr>
<td></td>
<td>● If skin irritation persists, call a physician</td>
</tr>
<tr>
<td>Eye contact</td>
<td>● Immediately flush with plenty of water. After initial flushing, remove any contact lenses and continue flushing for at least 15 minutes</td>
</tr>
<tr>
<td></td>
<td>● If symptoms persist, call a physician</td>
</tr>
<tr>
<td>Inhalation</td>
<td>● Move to fresh air</td>
</tr>
<tr>
<td></td>
<td>● If breathing is difficult, give oxygen</td>
</tr>
<tr>
<td></td>
<td>● If not breathing, give artificial respiration</td>
</tr>
<tr>
<td></td>
<td>● Consult a physician if necessary</td>
</tr>
<tr>
<td>Ingestion</td>
<td>● Clean mouth with water and afterwards drink plenty of water</td>
</tr>
<tr>
<td></td>
<td>● Never give anything by mouth to an unconscious person</td>
</tr>
<tr>
<td></td>
<td>● Do not induce vomiting without medical advice</td>
</tr>
<tr>
<td></td>
<td>● Consult a physician</td>
</tr>
</tbody>
</table>

5. FIRE-FIGHTING MEASURES

Suitable extinguishing media	● The product itself does not burn
	● Use extinguishing measures that are appropriate to local circumstances and the surrounding environment
Special protective equipment for firefighters	● Wear self-contained breathing apparatus and protective suit

6. ACCIDENTAL RELEASE MEASURES

Personal precautions	● Wear personal protective equipment
	● Avoid dust formation
Environmental precautions	● No special environmental precautions required
Methods for cleaning up	● Take up mechanically and collect in suitable container for disposal

7. HANDLING AND STORAGE

<table>
<thead>
<tr>
<th>Handling</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Technical measures/Precautions</td>
<td>● No special handling advice required</td>
</tr>
<tr>
<td>Safe handling advice</td>
<td>● Avoid dust formation in confined areas</td>
</tr>
<tr>
<td>Storage</td>
<td></td>
</tr>
<tr>
<td>Technical measures/Precautions</td>
<td>● Keep in a dry place</td>
</tr>
<tr>
<td>Incompatible products</td>
<td>● No information available</td>
</tr>
<tr>
<td>Specific use(s)</td>
<td>● None</td>
</tr>
</tbody>
</table>

8. EXPOSURE CONTROLS / PERSONAL PROTECTION
SAFETY DATA SHEET ALPHABOND

Exposure Limit Values

<table>
<thead>
<tr>
<th>CAS</th>
<th>Chemical Name</th>
<th>% Weight</th>
<th>OSHA*</th>
<th>ACGIH*</th>
<th>MEL*</th>
<th>GOEL*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1333-84-2</td>
<td>Aluminium oxide (AQCO3) hydrate</td>
<td>91.5-95.0</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>

* OSHA - Total PELs - Time Weighted Average (TWA)
* ACGIH - Occupational Exposure Limits - TWA
* MEL - United Kingdom - Maximum Exposure Limits - STELs
* GOEL - Germany - TRGS 900 - Occupational Exposure Limits - TWA, (a) exempt facilities listed in 2.4(8) and (9)

Personal protective equipment

<table>
<thead>
<tr>
<th>Respiratory protection</th>
<th>In case of insufficient ventilation, wear suitable respiratory equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>When workers are facing concentrations above the exposure limit they must use appropriate certified respirators</td>
</tr>
<tr>
<td>Hand protection</td>
<td>Wear suitable protective gloves</td>
</tr>
<tr>
<td>Eye protection</td>
<td>Tightly fitting safety goggles</td>
</tr>
<tr>
<td>Hygiene measures</td>
<td>When using, do not eat, drink or smoke</td>
</tr>
<tr>
<td>Skin and body protection</td>
<td>No special protective equipment required</td>
</tr>
<tr>
<td>Environmental exposure controls</td>
<td>No information available</td>
</tr>
</tbody>
</table>

9. PHYSICAL AND CHEMICAL PROPERTIES

General Information

Form | powder |
Colour | white |
Odour | None |

Important Health Safety and Environmental Information

Melting point/range | 2,000°C |
Boiling point/range | Not determined |
Flash point | Not applicable |
Autoignition temperature | does not ignite |
Risk of explosion | Not applicable |
Density | 3.2 g/cm³ |
Bulk density | 0.32-1.09 g/cm³ |
Water solubility | Insoluble |
pH | 10 |
Solubility in other solvents | insoluble |
Vapour density | No information available |

10. STABILITY AND REACTIVITY

Stability | Stable under normal conditions |
Conditions to avoid | No decomposition if stored and applied as directed |
Materials to avoid | No information available |
Hazardous decomposition products | Not applicable |
polymerization | Hazardous polymerisation does not occur |
Reactions | None under normal processing |
SAFETY DATA SHEET ALPHABOND

11. TOXICOLOGICAL INFORMATION

Local effects

<table>
<thead>
<tr>
<th>Effect</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skin irritation</td>
<td>May cause skin irritation and/or dermatitis.</td>
</tr>
<tr>
<td>Eye irritation</td>
<td>Contact with eyes may cause irritation.</td>
</tr>
<tr>
<td>Inhalation</td>
<td>May cause irritation of respiratory tract.</td>
</tr>
<tr>
<td>Ingestion</td>
<td>Ingestion may cause irritation to mucous membranes.</td>
</tr>
<tr>
<td>Additional advice</td>
<td>The following toxicological data shown are those obtained from tests on products of similar composition (in accordance with EC-Directive 1999/45/EC) No information available</td>
</tr>
</tbody>
</table>

Long term effects

<table>
<thead>
<tr>
<th>Effect</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skin contact</td>
<td>No information available</td>
</tr>
<tr>
<td>Eye contact</td>
<td>No information available</td>
</tr>
<tr>
<td>Inhalation</td>
<td>No information available</td>
</tr>
<tr>
<td>Ingestion</td>
<td>No information available</td>
</tr>
<tr>
<td>Additional advice</td>
<td></td>
</tr>
</tbody>
</table>

12. ECOLOGICAL INFORMATION

Additional ecological information

No information available.

Eco toxicity effects

- not water endangering

<table>
<thead>
<tr>
<th>CAS</th>
<th>Chemical Name</th>
<th>% Weight</th>
<th>WGK</th>
</tr>
</thead>
<tbody>
<tr>
<td>1332-84-2</td>
<td>Aluminium oxide (Al2O3), hydrate</td>
<td>91.5-95.0</td>
<td>N/A</td>
</tr>
</tbody>
</table>

13. DISPOSAL CONSIDERATIONS

<table>
<thead>
<tr>
<th>Description</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waste from residues / unused products</td>
<td>Dispose of in accordance with local regulations.</td>
</tr>
<tr>
<td>Contaminated packaging</td>
<td>Empty containers should be taken for local recycling, recovery or waste disposal.</td>
</tr>
<tr>
<td>Further information</td>
<td>Can be landfill, when in compliance with local regulations.</td>
</tr>
</tbody>
</table>

14. TRANSPORT INFORMATION

<table>
<thead>
<tr>
<th>Description</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOT</td>
<td>not regulated</td>
</tr>
<tr>
<td>ADR</td>
<td>not regulated</td>
</tr>
<tr>
<td>ADR/RID</td>
<td>not regulated</td>
</tr>
<tr>
<td>IATA/DGR</td>
<td>not regulated</td>
</tr>
<tr>
<td>CAO</td>
<td>not regulated</td>
</tr>
<tr>
<td>Further information</td>
<td>not regulated</td>
</tr>
</tbody>
</table>

15. REGULATORY INFORMATION

The preparation is non-dangerous in accordance with Directive 1999/45/EC

<table>
<thead>
<tr>
<th>Description</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contains</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Labelling</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Indication of danger</td>
<td>Not applicable</td>
</tr>
<tr>
<td>K-phrase(s)</td>
<td>Not applicable</td>
</tr>
<tr>
<td>K-phrase(s)</td>
<td>Not applicable</td>
</tr>
</tbody>
</table>

4 of 6
SAFETY DATA SHEET ALPHABOND

U.S. Inventories

<table>
<thead>
<tr>
<th>CAS</th>
<th>Chemical Name</th>
<th>% Weight</th>
<th>TSCA*</th>
<th>CERCLA/SARA*</th>
<th>NJRTK*</th>
<th>MRTKL*</th>
<th>PRTK*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1333-84-2</td>
<td>Aluminum oxide (A2O3), hydrate</td>
<td>91.5-95.0</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

* TSCA - United States - Section 8 (b) Inventory (TSCA)
* CERCLA/SARA - Hazardous Substances and their Reportable Quantities
* NJRTK - New Jersey - Department of Health RTK List
* MRTKL - Massachusetts - Right To Know List
* PRTK - Pennsylvania - RTK (Right to Know) List

International Inventories

<table>
<thead>
<tr>
<th>CAS</th>
<th>Chemical Name</th>
<th>% Weight</th>
<th>AICS - Australia*</th>
<th>EINECS - Europe and Union*</th>
<th>ENCS*</th>
<th>TSCA*</th>
<th>DSL - Canada*</th>
<th>IECSC*</th>
<th>ECL*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1333-84-2</td>
<td>Aluminum oxide (A2O3), hydrate</td>
<td>91.5-95.0</td>
<td>Present</td>
<td>N/A</td>
<td>1-23</td>
<td>N/A</td>
<td>Present</td>
<td>Present</td>
<td>N/A</td>
</tr>
</tbody>
</table>

* AICS - Australia - Inventory of Chemical Substances (AICS)
* EINECS - European Union - European Inventory of Existing Commercial Chemical Substances (EINECS)
* ENCS - Japan Existing and New Chemical Substances (ENCS)
* TSCA - Toxic Substances Control Act - Export Notification
* DSL - Canada - Domestic Substances List (DSL)
* IECSC - China - Inventory of Existing Chemical Substances Manufactured or Imported in China
* ECL - Korea - Existing and Evaluated Chemical Substances (ECL)

16. OTHER INFORMATION

Prepared By
Sidney J. DeGarmo, CIH
Alphatix Inc.
PO BOX 300
Bauxite AR 72011
USA
501-776-4677.

Literary reference

Other information
ACGIH - American Conference of Governmental Industrial Hygienist
AICS - Australian Inventory of Chemical Substances
CAS - Chemical Abstract Services
CERCLA - Comprehensive Environmental Response, Compensation, and Liability Act
CFR - Code of Federal Regulation
CPR - Cardi-pulmonary Resuscitation
DOT - Department of Transportation
DSL - Domestic Substances List (Canada)
ECL - Korea - Existing and Evaluated Chemical Substances
EINECS - European Inventory of Existing Commercial Chemical Substances
ENCS - Japan - Existing and New Chemical Substances
EWC - European Waste Catalogue
IARC - International Agency for Research on Cancer
IECSC - China - Inventory of Existing Chemical Substances Manufactured or Imported in China
LC - Lethal Concentration
LD - Lethal Dose
MAK - Maximum Workplace Concentration (Germany) "maximale Arbeitsplatz-Konzentration"
N/A - Not Available or Not Applicable
NDSL - Non - Domestic Substances List (Canada)
NIOSH - National Institute for Occupational Safety and Health
NTP - National Toxicology Program
SAFETY DATA SHEET ALPHABOND

OEL - Occupational Exposure Limit
OSHA - Occupational Safety and Health Administration
PIN - Product Identification Number
RCRA - Resources Conservation and Recovery Act
SARA - Superfund Amendments and Reauthorization Act
STEL - Short Term Exposure Limit
TCLP - Toxic Chemicals Leachate Program
TDG - Transportation of Dangerous Goods
TLV - Threshold Limit Value
TSCA - Toxic Substances Control Act
TWA - Time Weighted Average
WGK - Water Hazard Class (Wassergefährdungsklasse)
WHMIS - Workplace Hazardous Materials Information System

End of Safety Data Sheet
References

