US Bond Markets and Credit Spreads during the Great Depression

Toby Daglish 1 and Lyndon Moore 2

1NZ Institute for the Study of Competition and Regulation

2University of Melbourne

4 Nov 2011

Cecchetti (1992) shows real interest rates (3 and 6 month NY bank loans) rise to $\simeq 10\%$ by 1929 drop to 5% in 1930-31 and rise to almost 20% in 1932.

Cecchetti (1992) shows real interest rates (3 and 6 month NY bank loans) rise to $\approx 10\%$ by 1929 drop to 5% in 1930-31 and rise to almost 20% in 1932.

Fama and French (1989) examine default spread (all corporates - Aaa bonds) and term spread (Aaa yield - T-bill rate). Default spreads widen from 0.5% (late 1920s) to over 3% (1932-39). Term spread rises from 1-2% (late 20s) to 6% (1933). Default spread tracks long run business conditions, term spread tracks short term fluctuations.

Cecchetti (1992) shows real interest rates (3 and 6 month NY bank loans) rise to $\approx 10\%$ by 1929 drop to 5% in 1930-31 and rise to almost 20% in 1932.

Fama and French (1989) examine default spread (all corporates - Aaa bonds) and term spread (Aaa yield - T-bill rate). Default spreads widen from 0.5% (late 1920s) to over 3% (1932-39). Term spread rises from 1-2% (late 20s) to 6% (1933). Default spread tracks long run business conditions, term spread tracks short term fluctuations.

Baum and Thies (1992) use Railroad bonds from 1919-1930. Bond markets expected rising rates at start of 1928 and then falling rates at start of 1930.
Historical timeline

- Aug 1929 - Industrial Production starts to fall.
Historical timeline

- Aug 1929 - Industrial Production starts to fall.
- Sep 1929 - NBER start of depression, CPI + PPI peak.
Historical timeline

- Aug 1929 - Industrial Production starts to fall.
- Sep 1929 - NBER start of depression, CPI + PPI peak.
- Oct 29, 1929 - Black Tuesday on NYSE.
Historical timeline

- Aug 1929 - Industrial Production starts to fall.
- Sep 1929 - NBER start of depression, CPI + PPI peak.
- Oct 29, 1929 - Black Tuesday on NYSE.
- 1930 - increases in tariffs and business failures, declines in profits, employment, international trade.
Historical timeline

- Aug 1929 - Industrial Production starts to fall.
- Sep 1929 - NBER start of depression, CPI + PPI peak.
- Oct 29, 1929 - Black Tuesday on NYSE.
- 1930 - increases in tariffs and business failures, declines in profits, employment, international trade.
- 1931 - Britain, Germany, others leave gold standard.
Historical timeline

- Aug 1929 - Industrial Production starts to fall.
- Sep 1929 - NBER start of depression, CPI + PPI peak.
- Oct 29, 1929 - Black Tuesday on NYSE.
- 1930 - increases in tariffs and business failures, declines in profits, employment, international trade.
- 1931 - Britain, Germany, others leave gold standard.
- Oct 1930 - Mar 1933 - waves of bank failures (roughly half the banks failed or merged).
Historical timeline

- Aug 1929 - Industrial Production starts to fall.
- Sep 1929 - NBER start of depression, CPI + PPI peak.
- Oct 29, 1929 - Black Tuesday on NYSE.
- 1930 - increases in tariffs and business failures, declines in profits, employment, international trade.
- 1931 - Britain, Germany, others leave gold standard.
- Oct 1930 - Mar 1933 - waves of bank failures (roughly half the banks failed or merged).
- Jan 1932 - Reconstruction Finance Corporation starts to distribute $5 billion (over 1932-34) to banks, railroads, businesses.
Historical timeline

- Aug 1929 - Industrial Production starts to fall.
- Sep 1929 - NBER start of depression, CPI + PPI peak.
- Oct 29, 1929 - Black Tuesday on NYSE.
- 1930 - increases in tariffs and business failures, declines in profits, employment, international trade.
- 1931 - Britain, Germany, others leave gold standard.
- Oct 1930 - Mar 1933 - waves of bank failures (roughly half the banks failed or merged).
- Jan 1932 - Reconstruction Finance Corporation starts to distribute $5 billion (over 1932-34) to banks, railroads, businesses.
- Apr 1933 - NBER defined end of depression.
Historical timeline

- Aug 1929 - Industrial Production starts to fall.
- Sep 1929 - NBER start of depression, CPI + PPI peak.
- Oct 29, 1929 - Black Tuesday on NYSE.
- 1930 - increases in tariffs and business failures, declines in profits, employment, international trade.
- 1931 - Britain, Germany, others leave gold standard.
- Oct 1930 - Mar 1933 - waves of bank failures (roughly half the banks failed or merged).
- Jan 1932 - Reconstruction Finance Corporation starts to distribute $5 billion (over 1932-34) to banks, railroads, businesses.
- Apr 1933 - NBER defined end of depression.
- Jan 1934 - US leaves the gold standard (devalues by 40%).
Historical timeline

- Aug 1929 - Industrial Production starts to fall.
- Sep 1929 - NBER start of depression, CPI + PPI peak.
- Oct 29, 1929 - Black Tuesday on NYSE.
- 1930 - increases in tariffs and business failures, declines in profits, employment, international trade.
- 1931 - Britain, Germany, others leave gold standard.
- Oct 1930 - Mar 1933 - waves of bank failures (roughly half the banks failed or merged).
- Jan 1932 - Reconstruction Finance Corporation starts to distribute $5 billion (over 1932-34) to banks, railroads, businesses.
- Apr 1933 - NBER defined end of depression.
- Jan 1934 - US leaves the gold standard (devalues by 40%).
- 1933-1937 Industrial production doubles.
Historical timeline

- Aug 1929 - Industrial Production starts to fall.
- Sep 1929 - NBER start of depression, CPI + PPI peak.
- Oct 29, 1929 - Black Tuesday on NYSE.
- 1930 - increases in tariffs and business failures, declines in profits, employment, international trade.
- 1931 - Britain, Germany, others leave gold standard.
- Oct 1930 - Mar 1933 - waves of bank failures (roughly half the banks failed or merged).
- Jan 1932 - Reconstruction Finance Corporation starts to distribute $5 billion (over 1932-34) to banks, railroads, businesses.
- Apr 1933 - NBER defined end of depression.
- Jan 1934 - US leaves the gold standard (devalues by 40%).
- 1933-1937 Industrial production doubles.
- mid 1937 to mid 1938 - second severe recession, industrial production down 50%.
Causes of Depression

- Debt-Deflation (Fisher).
Causes of Depression

- Debt-Deflation (Fisher).
- Tight Monetary Policy, Banking Crises (Friedman-Schwartz, Bernanke).
Causes of Depression

- Debt-Deflation (Fisher).
- Tight Monetary Policy, Banking Crises (Friedman-Schwartz, Bernanke).
- Aggregate Demand Shocks (Keynes).
Causes of Depression

- Debt-Deflation (Fisher).
- Tight Monetary Policy, Banking Crises (Friedman-Schwartz, Bernanke).
- Aggregate Demand Shocks (Keynes).
- Business Cartels/Rigid Wages (Cole and Ohanian)
Corporate Net Income (1927=100)

- Agriculture
- Construction
- Manufacturing
- Mining
- Finance
- Services
- Trading
- Transport & Utilities
Prices

CPI, PPI, IP (Index Values)

- Consumer Price Index
- Producer Price Index
- Industrial Production

Toby Daglish and Lyndon Moore
Depression Bonds
One problem with studying the modern corporate bond market is that it is OTC.
Better data?

- One problem with studying the modern corporate bond market is that it is OTC.
- This occurred during the late 1940s.
One problem with studying the modern corporate bond market is that it is OTC.

This occurred during the late 1940s.

Prior to this, corporate bonds were traded mostly on the NYSE.
One problem with studying the modern corporate bond market is that it is OTC.

This occurred during the late 1940s.

Prior to this, corporate bonds were traded mostly on the NYSE.

Municipals were OTC since the 1920s, and Treasuries were transitioning from the NYSE to the Dealer market during the late 1930s.
Turnover

Bond Market Turnover ($m, log scale)

- U.S. Government
- Corporate
- Foreign
- Stocks

Toby Daglish and Lyndon Moore

Depression Bonds
NYSE versus Curb market

Bond Market Turnover ($m)

- NYSE
- Curb
- Ratio

Toby Daglish and Lyndon Moore
Depression Bonds
Corporate bond prices and quantities obtained from New York Times (monthly, 1927-1940).
Data

- Corporate bond prices and quantities obtained from New York Times (monthly, 1927-1940).
- Treasury data from CRSP.
Data

- Corporate bond prices and quantities obtained from New York Times (monthly, 1927-1940).
- Treasury data from CRSP.
- Obtain details of bonds from Moody’s manuals:
Data

- Corporate bond prices and quantities obtained from New York Times (monthly, 1927-1940).
- Treasury data from CRSP.
- Obtain details of bonds from Moody’s manuals:
 - Coupons, payment dates, issue dates, maturity.
Data

- Corporate bond prices and quantities obtained from New York Times (monthly, 1927-1940).
- Treasury data from CRSP.
- Obtain details of bonds from Moody’s manuals:
 - Coupons, payment dates, issue dates, maturity.
 - Call provisions, Convertibility.
Data

- Corporate bond prices and quantities obtained from New York Times (monthly, 1927-1940).
- Treasury data from CRSP.
- Obtain details of bonds from Moody’s manuals:
 - Coupons, payment dates, issue dates, maturity.
 - Call provisions, Convertibility.
 - Credit ratings, coupons skipped, restructuring information.
Data

- Corporate bond prices and quantities obtained from New York Times (monthly, 1927-1940).
- Treasury data from CRSP.
- Obtain details of bonds from Moody’s manuals:
 - Coupons, payment dates, issue dates, maturity.
 - Call provisions, Convertibility.
 - Credit ratings, coupons skipped, restructuring information.
 - Ownership by other firm.
Data

- Corporate bond prices and quantities obtained from New York Times (monthly, 1927-1940).
- Treasury data from CRSP.
- Obtain details of bonds from Moody’s manuals:
 - Coupons, payment dates, issue dates, maturity.
 - Call provisions, Convertibility.
 - Credit ratings, coupons skipped, restructuring information.
 - Ownership by other firm.
- Match with CUSIPs from CRSP.
Data filtering

- Remove bonds with fewer than 25 observations.
Data filtering

- Remove bonds with fewer than 25 observations.
- Use CUSIPs of parent companies for subsidiaries.
Data filtering

- Remove bonds with fewer than 25 observations.
- Use CUSIPs of parent companies for subsidiaries.
 - When one railroad took over another, it would usually inherit its debt.
Data filtering

- Remove bonds with fewer than 25 observations.
- Use CUSIPs of parent companies for subsidiaries.
 - When one railroad took over another, it would usually inherit its debt.
- Apply Fama-Bliss filtering (on Treasuries) to remove outliers for each yield curve.
Upgrades and Downgrades

Toby Daglish and Lyndon Moore

Depression Bonds
New Issues of bonds

Number of issues

Toby Daglish and Lyndon Moore
Depression Bonds
Average rating of new issues

Average rating of new bond

Toby Daglish and Lyndon Moore

Depression Bonds
Average maturity of new issues

Average maturity of new issue

Toby Daglish and Lyndon Moore Depression Bonds
Portion of new issues with optionality

Portion of new issues callable

Portion of new issues convertible
Yield curve fitting

Yield to maturity for a given bond finds the IRR of the bond's cash flows. Problem is that this is not really comparable across bonds:
Yield to maturity for a given bond finds the IRR of the bond’s cash flows. Problem is that this is not really comparable across bonds:

- If yield curve is upward sloping, bonds with higher coupons will have lower yields. (Downward sloping curve \Rightarrow high coupons, high yield).
Yield curve fitting

- Yield to maturity for a given bond finds the IRR of the bond's cash flows. Problem is that this is not really comparable across bonds:
 - If yield curve is upward sloping, bonds with higher coupons will have lower yields. (Downward sloping curve ⇒ high coupons, high yield).
- We would like to observe the zero coupon yield curves.
Yield curve fitting

- Yield to maturity for a given bond finds the IRR of the bond’s cash flows. Problem is that this is not really comparable across bonds:
 - If yield curve is upward sloping, bonds with higher coupons will have lower yields. (Downward sloping curve ⇒ high coupons, high yield).

- We would like to observe the zero coupon yield curves.
 - Zero curve gives us a discount rate which would be used to value a zero coupon bond at different times (i.e. not contaminated by coupon effects).
Suppose we have a set of bonds, each with observed price P_i.
Yield curve fitting for plain vanilla bonds

- Suppose we have a set of bonds, each with observed price P_i.
- Each bond pays coupons at times $t_{i_1}, t_{i_2}, \ldots, T$.
Suppose we have a set of bonds, each with observed price P_i.

Each bond pays coupons at times $t_{i1}, t_{i2}, \ldots, T$.

If I have a yield curve, the implied bond price would be:

$$\hat{P}_i = \sum_{j} e^{-r(t_{ij})t_{ij}c} + 100e^{-r(T)T}.$$
Suppose we have a set of bonds, each with observed price P_i.
Each bond pays coupons at times $t_{i1}, t_{i2}, \ldots, T$.
If I have a yield curve, the implied bond price would be:

$$\hat{P}_i = \sum_{j} e^{-r(t_{ij})t_{ij}} c + 100e^{-r(T)T}.$$

Ideally, $\hat{P}_i = P_i$.

Parameterising the curve

Fix $\hat{r}(t_k) t_k$ at a set of times t_k (log discount factors).
Parameterising the curve

- Fix $\hat{r}(t_k)t_k$ at a set of times t_k (log discount factors).
- Fit cubic splines through these points.
Parameterising the curve

- Fix $\hat{r}(t_k) t_k$ at a set of times t_k (log discount factors).
- Fit cubic splines through these points.
 - Cubic splines are piecewise cubics, chosen such that height and slopes are continuous at each “knot point” (t_k).
Parameterising the curve

- Fix $\hat{r}(t_k)t_k$ at a set of times t_k (log discount factors).
- Fit cubic splines through these points.
 - Cubic splines are piecewise cubics, chosen such that height and slopes are continuous at each “knot point” (t_k).
- Cubic spline gives a smooth function $r(t)t$ which satisfies $r(t_k)t_k = \hat{r}(t_k)t_k$.
Parameterising the curve

- Fix $\hat{r}(t_k)t_k$ at a set of times t_k (log discount factors).
- Fit cubic splines through these points.
 - Cubic splines are piecewise cubics, chosen such that height and slopes are continuous at each “knot point” (t_k).
- Cubic spline gives a smooth function $r(t)t$ which satisfies $r(t_k)t_k = \hat{r}(t_k)t_k$.
- As we vary $\hat{r}(t_k)$, the yield curve changes.
Parameterising the curve

- Fix $\hat{r}(t_k)t_k$ at a set of times t_k (log discount factors).
- Fit cubic splines through these points.
 - Cubic splines are piecewise cubics, chosen such that height and slopes are continuous at each “knot point” (t_k).
- Cubic spline gives a smooth function $r(t)t$ which satisfies $r(t_k)t_k = \hat{r}(t_k)t_k$.
- As we vary $\hat{r}(t_k)$, the yield curve changes.
- We have one parameter to play with for each t_k.
Begin with a set of knot points (5, 10, 20 and 50 years).
Begin with a set of knot points (5, 10, 20 and 50 years).

If there are no bonds between any pair of knot points, remove that knot.
Begin with a set of knot points (5, 10, 20 and 50 years).
If there are no bonds between any pair of knot points, remove that knot.
Choose log discount factors so as to best price selection of bonds.
Estimating the yield curve

- Begin with a set of knot points (5, 10, 20 and 50 years).
- If there are no bonds between any pair of knot points, remove that knot.
- Choose log discount factors so as to best price selection of bonds.
- Criterion for best price is squared error, divided by squared duration.
Begin with a set of knot points (5, 10, 20 and 50 years).

If there are no bonds between any pair of knot points, remove that knot.

Choose log discount factors so as to best price selection of bonds.

Criterion for best price is squared error, divided by squared duration.

This is important, since long maturity bonds will be very sensitive to interest rate changes, and we might otherwise end up fitting these, but not the short maturities.
Callable bonds

- Contain an option (for issuer) to buy the bond back from the bondholder.
Callable bonds

- Contain an option (for issuer) to buy the bond back from the bondholder.
- About half of all bonds are callable (not convertible) with one quarter callable & convertible and one quarter plain vanilla.
Callable bonds

- Contain an option (for issuer) to buy the bond back from the bondholder.
- About half of all bonds are callable (not convertible) with one quarter callable & convertible and one quarter plain vanilla.
- Break down into two types:
Callable bonds

- Contain an option (for issuer) to buy the bond back from the bondholder.
- About half of all bonds are callable (not convertible) with one quarter callable & convertible and one quarter plain vanilla.
- Break down into two types:
 - American - can be exercised any time.
Callable bonds

- Contain an option (for issuer) to buy the bond back from the bondholder.
- About half of all bonds are callable (not convertible) with one quarter callable & convertible and one quarter plain vanilla.
- Break down into two types:
 - American - can be exercised any time.
 - Bermudan/Semi-American - can be exercised on coupon dates.
Callable bonds

- Contain an option (for issuer) to buy the bond back from the bondholder.
- About half of all bonds are callable (not convertible) with one quarter callable & convertible and one quarter plain vanilla.
- Break down into two types:
 - American - can be exercised any time.
 - Bermudan/Semi-American - can be exercised on coupon dates.
- Most have notice periods (e.g. firm must give 2 months notice to call bond).
221 bonds are plain vanilla (neither callable nor convertible, nor exotic).
Breaking up the sample

- 221 bonds are plain vanilla (neither callable nor convertible, nor exotic).
- 4 bonds are convertible (only)
Breaking up the sample

- 221 bonds are plain vanilla (neither callable nor convertible, nor exotic).
- 4 bonds are convertible (only)
- 91 bonds are callable and convertible.
Breaking up the sample

- 221 bonds are plain vanilla (neither callable nor convertible, nor exotic).
- 4 bonds are convertible (only)
- 91 bonds are callable and convertible.
- 589 bonds are callable (not convertible).
221 bonds are plain vanilla (neither callable nor convertible, nor exotic).

4 bonds are convertible (only)

91 bonds are callable and convertible.

589 bonds are callable (not convertible).

 49 are “Messy”.

Toby Daglish and Lyndon Moore

Depression Bonds
Breaking up the sample

- 221 bonds are plain vanilla (neither callable nor convertible, nor exotic).
- 4 bonds are convertible (only)
- 91 bonds are callable and convertible.
- 589 bonds are callable (not convertible).
 - 49 are “Messy”.
 - 388 are Semi-American, 152 are American.
Breaking up the sample

- 221 bonds are plain vanilla (neither callable nor convertible, nor exotic).
- 4 bonds are convertible (only)
- 91 bonds are callable and convertible.
- 589 bonds are callable (not convertible).
 - 49 are “Messy”.
 - 388 are Semi-American, 152 are American.
 - Of the “simple” callables, 164 are Semi-American, 33 are American.
Pricing callable bonds

- Use Hull-White model

\[dr = \kappa(\theta(t) - r)dt + \sigma dW \]

\(\theta(t) \) is function of time to match zero curve.
Pricing callable bonds

- Use Hull-White model

\[dr = \kappa(\theta(t) - r)dt + \sigma dW \]

theta(t) is function of time to match zero curve.

- Bond prices become solution to PDE.
Pricing callable bonds

- Use Hull-White model

\[dr = \kappa(\theta(t) - r)dt + \sigma dW \]

\(\theta(t) \) is function of time to match zero curve.

- Bond prices become solution to PDE.

- Solve PDE, incorporating early exercise properties (and notice).
Pricing callable bonds

- Use Hull-White model

\[dr = \kappa(\theta(t) - r)dt + \sigma dW \]

\(\theta(t) \) is function of time to match zero curve.

- Bond prices become solution to PDE.

- Solve PDE, incorporating early exercise properties (and notice).

- Can include these bonds in with the plain-vanilla bonds, but now we must also choose \(\kappa \) and \(\sigma \) (mean reversion and volatility).
Why bother with callables?

- Callables are a lot of work (solving PDE takes time).
Why bother with callables?

- Callables are a lot of work (solving PDE takes time).
- But:
Why bother with callables?

- Callables are a lot of work (solving PDE takes time).
- But:
 - They are a large part of the market.
Why bother with callables?

- Callables are a lot of work (solving PDE takes time).
- But:
 - They are a large part of the market.
 - For the modern market, many callables are also convertible, which is even more hassle (i.e. not doable).
Why bother with callables?

- Callables are a lot of work (solving PDE takes time).
- But:
 - They are a large part of the market.
 - For the modern market, many callables are also convertible, which is even more hassle (i.e. not doable).
 - Estimating κ and σ are useful in their own right, since they tell us about market participants’ opinions about volatility (implied volatility).
Methodology

- Group days into sets of 3.
Methodology

- Group days into sets of 3.
- For each set, estimate the three yield curves, along with λ, σ.
Methodology

- Group days into sets of 3.
- For each set, estimate the three yield curves, along with λ, σ.
- Cannot estimate when there are not enough bonds - e.g. 4 callable bonds over the 3 days \Rightarrow cannot fit 3 yield curves + 2 parameters.
Group days into sets of 3.

For each set, estimate the three yield curves, along with λ, σ.

Cannot estimate when there are not enough bonds - e.g. 4 callable bonds over the 3 days \Rightarrow cannot fit 3 yield curves $+$ 2 parameters.

Work only when we have at least 1 noncallable per day, and 2+ noncallables.
Sample output: Treasury curves

Toby Daglish and Lyndon Moore

Depression Bonds
Toby Daglish and Lyndon Moore Depression Bonds
Sample output: Pennsylvania Railroad volatility
Sample output: Canadian National Railway Snapshot Dec 1927

CANADIAN NATIONAL RY CO

Toby Daglish and Lyndon Moore
Depression Bonds
Sample output: Canadian National Railway Snapshot Dec 1931

CANADIAN NATIONAL RY CO

Toby Daglish and Lyndon Moore Depression Bonds
CANDIAN NATIONAL RAILROAD

Toby Daglish and Lyndon Moore
Depression Bonds
Sample output: Canadian National Railway volatility

Toby Daglish and Lyndon Moore

Depression Bonds
Where from here?

- Treasury curves completed (ish).
Where from here?

- Treasury curves completed (ish).
- We can easily produce non-callable curves.
Where from here?

- Treasury curves completed (ish).
- We can easily produce non-callable curves.
- Codify non-simple call structures.
Where from here?

- Treasury curves completed (ish).
- We can easily produce non-callable curves.
- Codify non-simple call structures.
- Need to run through all firms, including callable data.
Where from here?

- Treasury curves completed (ish).
- We can easily produce non-callable curves.
- Codify non-simple call structures.
- Need to run through all firms, including callable data.
- Need to address separation of credit risk/liquidity.
Where from here?

- Treasury curves completed (ish).
- We can easily produce non-callable curves.
- Codify non-simple call structures.
- Need to run through all firms, including callable data.
- Need to address separation of credit risk/liquidity.
- Things to look for:
Where from here?

- Treasury curves completed (ish).
- We can easily produce non-callable curves.
- Codify non-simple call structures.
- Need to run through all firms, including callable data.
- Need to address separation of credit risk/liquidity.
- Things to look for:
 - Contagion.
Where from here?

- Treasury curves completed (ish).
- We can easily produce non-callable curves.
- Codify non-simple call structures.
- Need to run through all firms, including callable data.
- Need to address separation of credit risk/liquidity.
- Things to look for:
 - Contagion.
 - Predictive power of yield curves vs. credit ratings.
Where from here?

- Treasury curves completed (ish).
- We can easily produce non-callable curves.
- Codify non-simple call structures.
- Need to run through all firms, including callable data.
- Need to address separation of credit risk/liquidity.
- Things to look for:
 - Contagion.
 - Predictive power of yield curves vs. credit ratings.
 - Other suggestions?