How to get from Avalon to Berhampore: commuting and car ownership decisions in Wellington, NZ

Toby Daglish1, Mairéad de Róiste2 and Yiğit Sağlam3

1NZISCR, 2VUW, 3NZISCR, VUW

15 May 2013
This project

- Goal: to explain how households make the joint decision:
 - How many vehicles should your household own?
 - How to get to work?
 - Where to live?

- Uses Ministry of Transport HTS survey data.

- Brings together Econometrics (Toby, Yiğit) and Geography (Mairéad).

- One research assistant (Richard Law) and a summer scholarship student (Tom Pettit – funded by Wellington City Council).

- Has considerable scope to be extended and to answer some interesting policy questions.
Survey data

- Surveyed meshblocks centroids
- Meshblock centroids
- Surveyed meshblocks

Daglish, de Róiste, and Sağlam
Avalon to Berhampore
Pedestrian and non-car routes
Residential roads
Collector roads
Arterial roads
Major roads
Motorway
Pedestrian Route

Elevation change for pedestrian route

Daglish, de Róiste, and Sağlam
Avalon to Berhampore
Public transport

Map showing the public transport network between Wellington and Avalon to Berhampore.

Key:
- Bus stops
- Bus
- Home
- Modelled bus
- Car
- Work
- Pedestrian
- Bicycle
Commuting Modes

- **Car or Motorcycle**
- **Bicycle**
- **Bus**
- **Pedestrian**

Maps showing commute modes from Avalon to Berhampore.
Discrete-Choice Logit Models

- Model individuals making a choice between alternatives.
- Individuals receive *utility* from different choices.
- Individuals make choices which give them the highest utility.
- Utility from a choice may be related to:
 - Characteristics of a choice (e.g. how long does it take to get to work if I walk?).
 - Characteristics of an individual (e.g. I am a year older).
 - Characteristics of an individual (e.g. I don’t have a drivers licence, how does that affect my utility from driving?).
Discrete Choices

- Commuting mode:
 - Active Transport – Walking over short distances, cycling over longer distances (22.5 minute penalty on cycling).
 - Driving.
 - Public Transport – Walking to station or driving to station if station has park and ride (10 minute penalty for PT with driving).

- PT and AT modes had to be combined, since otherwise, our sample would have too few observations e.g. for cycling.

- Similarly, we had to combine numbers of cars, since there were few instances with zero cars.
Household car ownership

One or more cars per license holder (proportion)

- 0.00 - 0.20
- 0.21 - 0.40
- 0.41 - 0.60
- 0.61 - 0.80
- 0.81 - 1.00
Participants who commute by active transport

Active transport commuters (proportion)
- 0.00 - 0.20
- 0.21 - 0.40
- 0.41 - 0.60
- 0.61 - 0.80
- 0.81 - 1.00
Participants who commute by car

Commuters by car (proportion)

- 0.00 - 0.20
- 0.21 - 0.40
- 0.41 - 0.60
- 0.61 - 0.80
- 0.81 - 1.00
Participants who commute by public transport

Commuters by public transport (proportion)

- ○ 0.00 - 0.20
- ■ 0.21 - 0.40
- ● 0.41 - 0.60
- ● 0.61 - 0.80
- ■ 0.81 - 1.00

Daglish, de Róiste, and Sağlam

Avalon to Berhampore
What variables are used in our analysis?

List of predictors:

- **Alternative-specific variables:**
 - *Time taken*: commuting time,
 - *Cost*: cost of commuting,
 - *Distance*: distance of commute,

- **Alternative-invariant variables:**
 - *Workers, Non-workers*: number of adults in the HH who do/do not have a main job,
 - *DT*: dummy variable (= 1 if work location is in the downtown),
 - *Sub 30 min walk*: dummy variable (= 1 if time taken to walk to work is less than 30 minutes).
 - *Income 100K+:* dummy variable (= 1 if income $100 000 or more).
 - *Women*: dummy variable (= 1 if female).
 - *Single women*: dummy variable (= 1 if female living alone).
 - *No licence*: dummy variable (= 1 if person has no drivers licence).
 - *Age*: age of individual,
Regression Results

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coeff.</th>
<th>T-stat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time taken</td>
<td>-0.05708</td>
<td>-5.5716</td>
</tr>
<tr>
<td>Time taken(^2)</td>
<td>7.2471e-05</td>
<td>2.2644</td>
</tr>
<tr>
<td>Cost</td>
<td>-0.025598</td>
<td>-4.0394</td>
</tr>
<tr>
<td>Distance</td>
<td>-0.00010238</td>
<td>-1.9979</td>
</tr>
<tr>
<td>Non workers * High</td>
<td>-0.30527</td>
<td>-3.3676</td>
</tr>
<tr>
<td>Workers * High</td>
<td>-0.43202</td>
<td>-4.3497</td>
</tr>
<tr>
<td>DT * Drive</td>
<td>-2.7233</td>
<td>-13.645</td>
</tr>
<tr>
<td>Sub 30 min walk * AT</td>
<td>1.3005</td>
<td>4.4017</td>
</tr>
<tr>
<td>Income 100K+ * Cost</td>
<td>0.007695</td>
<td>0.88764</td>
</tr>
<tr>
<td>Single Women * High * PT</td>
<td>-0.038886</td>
<td>-0.097077</td>
</tr>
<tr>
<td>Single Women * High * AT</td>
<td>0.91621</td>
<td>2.0676</td>
</tr>
<tr>
<td>Women * High * PT</td>
<td>0.69926</td>
<td>2.9714</td>
</tr>
<tr>
<td>Women * High * AT</td>
<td>0.42929</td>
<td>1.3882</td>
</tr>
<tr>
<td>No licence * Drive</td>
<td>-1.9952</td>
<td>-6.226</td>
</tr>
<tr>
<td>Const. (Low, Drive)</td>
<td>-0.28839</td>
<td>-0.47633</td>
</tr>
<tr>
<td>Const. (Low, PT)</td>
<td>-0.10019</td>
<td>-0.18154</td>
</tr>
<tr>
<td>Const. (High, AT)</td>
<td>-0.062689</td>
<td>-0.10089</td>
</tr>
<tr>
<td>Const. (High, Drive)</td>
<td>1.6618</td>
<td>2.7052</td>
</tr>
<tr>
<td>Const. (High, PT)</td>
<td>-0.87604</td>
<td>-1.4047</td>
</tr>
<tr>
<td>Age (Low, Drive)</td>
<td>0.02927</td>
<td>2.3056</td>
</tr>
<tr>
<td>Age (Low, PT)</td>
<td>-0.0019557</td>
<td>-0.13769</td>
</tr>
<tr>
<td>Age (High, AT)</td>
<td>0.015878</td>
<td>1.0875</td>
</tr>
<tr>
<td>Age (High, Drive)</td>
<td>0.040076</td>
<td>3.4696</td>
</tr>
<tr>
<td>Age (High, PT)</td>
<td>0.036056</td>
<td>2.608</td>
</tr>
</tbody>
</table>

Table: Discrete choice model

Daglish, de Róiste, and Sağlam

Avalon to Berhampore
Regression Results (contd.)

- Commute times are very important for individuals (but marginally less so for longer commutes).
- Working downtown is a disincentive to driving.
- Larger households have economies of scale in car ownership.
- Active transport is very popular for short (walkable) distances.
- Single women often own cars but don’t use them to commute.
- Women will use PT even when a car is available (high, PT).
- Most people like (high, drive) combination.
- Older commuters more likely to choose (low, Drive), (high, PT) or (high, Drive).
- Not (as) important: number of children, income, ethnicity.
Methodology

- Consider the effects of commute times on property prices.
- Specifically: examine public transport travel times to Cuba Street & Manner’s Mall.
- Control for a range of things that may affect prices:
 - Number of bedrooms.
 - Vintage of house.
 - Vegetation coverage (dense, sparse, none).
Results

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coeff.</th>
<th>T-stat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inherent Home Value</td>
<td>$172,110.00</td>
<td>2.555</td>
</tr>
<tr>
<td>Each Weekday PT Service</td>
<td>$186.90</td>
<td>2.854</td>
</tr>
<tr>
<td>Each Weekend PT Service</td>
<td>-$183.82</td>
<td>-1.612</td>
</tr>
<tr>
<td>Additional minute to Cuba Mall(via PT)</td>
<td>-$6,708.30</td>
<td>-15.081</td>
</tr>
<tr>
<td>% point of no vegetation(Urban Retail Proxy)</td>
<td>-$129.71</td>
<td>-0.610</td>
</tr>
<tr>
<td>% Point of dense vegetation</td>
<td>$402.86</td>
<td>1.666</td>
</tr>
<tr>
<td>Each bedroom</td>
<td>$210,990.00</td>
<td>11.044</td>
</tr>
<tr>
<td>Meshblock Structure Age - 1890s</td>
<td>$80,055.00</td>
<td>1.896</td>
</tr>
<tr>
<td>Meshblock Structure Age - 1900s</td>
<td>-$31,622.00</td>
<td>-1.077</td>
</tr>
<tr>
<td>Meshblock Structure Age - 1910s</td>
<td>-$1,007.00</td>
<td>-0.032</td>
</tr>
<tr>
<td>Meshblock Structure Age - 1920s</td>
<td>-$22,491.00</td>
<td>-0.854</td>
</tr>
<tr>
<td>Meshblock Structure Age - 1930s</td>
<td>-$26,691.00</td>
<td>-0.955</td>
</tr>
<tr>
<td>Meshblock Structure Age - 1940s</td>
<td>-$108,670.00</td>
<td>-3.900</td>
</tr>
<tr>
<td>Meshblock Structure Age - 1950s</td>
<td>-$145,880.00</td>
<td>-5.531</td>
</tr>
<tr>
<td>Meshblock Structure Age - 1960s</td>
<td>-$141,100.00</td>
<td>-5.556</td>
</tr>
<tr>
<td>Meshblock Structure Age - 1970s</td>
<td>-$123,060.00</td>
<td>-4.603</td>
</tr>
<tr>
<td>Meshblock Structure Age - 1980s</td>
<td>-$126,170.00</td>
<td>-3.967</td>
</tr>
<tr>
<td>Meshblock Structure Age - 1990s</td>
<td>-$52,027.00</td>
<td>-1.536</td>
</tr>
</tbody>
</table>

Table: House values in Wellington City and Lower Hutt
People like:

- Being close to downtown (as measured by commute times). Improving commute times improves house values.
- Being on the city fringe (dense vegetation).
- Very old houses or very new houses (but not old-ish houses).
Extensions: Modelling

- Currently working on the residential location decision.
 * Challenging, because choice set expands by ≈ 200 area units the household could live in.
 * Currently have preliminary commute times, implementing choice model.
Alternative residential locations

- Home
- Alternative ‘home’
- Work

Legend:
- Alternative area unit 1
- Alternative area unit 2
- Alternative area unit 3
- Alternative area unit 4
- Original route
- Alternatives routes
Extensions: Modelling (contd.)

- Breaking choice between individual and household.
 - e.g. individuals can commute by different modes, but household has common location/car ownership,
 - Update the model so the distribution of alternatives for individuals in the same HH can be combined to determine the HH car ownership level.
Extensions: Data

▶ Parking issues:
 * Currently controlled by a “Downtown Driving” variable.
 * Modelling parking accessibility?

▶ Travel issues:
 * Commute times are “optimistic” given rush-hour performance. Delays for intersections?
 * Data on actual top speeds during peak hours? Fuel efficiency?
 * Wait times for buses/trains?
Potential Applications

- How do changing commute times affect household mode choice?
 * Widening roads (improves driving) versus more frequent/faster public transport.

- How do petrol price changes affect car ownershipemode choice?