Open Access Te Herenga Waka-Victoria University of Wellington
Browse
thesis_access.pdf (455.1 MB)

Surface and shear-wave velocity modelling of the Tongariro Volcanic Centre, New Zealand, using ambient noise cross-correlation

Download (455.1 MB)
thesis
posted on 2021-11-15, 16:17 authored by Godfrey, Holly Joanne

We use continuous seismic data from permanent and temporary, broadband and short-period stations that were operating during 2001 and 2008 to investigate the subsurface velocity structure of the Tongariro Volcanic Centre (TgVC) of New Zealand, particularly the highly active but poorly understood Ruapehu and Tongariro Volcanoes.  Stacks of cross-correlation of two concurrent ambient noise seismograms can be used to estimate the interstation Green's Function, i.e., the impulse response of the earth between the two receivers. The Green's Functions are used to retrieve the dispersion relation (frequency-dependent velocity) of surface waves at different periods, which reflects the shear-wave velocity structure in the Fresnel volume of the propagating surface waves. Several studies have used dispersion measurements from ambient noise cross-correlations to investigate the shallow subsurface shear-wave velocity structure of active volcanoes around the world. Most use vertical components to retrieve the Rayleigh waves, but it is becoming increasingly common to use the horizontal seismogram components in addition to the vertical, giving further constraints to Rayleigh-wave measurements and introducing data relating to Love waves.  We compute 1,048,968 daily cross-correlations for 955 viable station pairs across the two periods, including all nine-components of the cross-correlation tensor where possible. These daily functions are then stacked into 7458 full-stacks, of which we make group velocity dispersion measurements for 2641 RR-, RZ-, TT-, ZR- and ZZ-component stacks. Cross-correlation quality varies across the networks, with some station pairs possibly contaminated with timing errors.  We observe both the fundamental and rst higher-order modes within our database of dispersion measurements. However, correctly identifying the mode of some measurements is challenging as the range of group velocities measured reflects both presence of multiple modes and heterogeneity of the local velocity structure. We assign modes to over 1900 measurements, of which we consider 1373 to be high quality.  We invert fundamental mode Rayleigh- and Love-wave dispersion curves independently and jointly for one dimensional shear-wave velocity profiles at Ruapehu and Tongariro Volcanoes, using dispersion measurements from two individual station pairs and average dispersion curves from measurements within specifi c areas on/around the volcanoes. Our Ruapehu profiles show little velocity variation with depth, suggesting that volcanic edifice is made of material that is compacting and being hydrothermally altered with depth. At Tongariro, we observe larger increases in velocity with depth, which we interpret as different layers within Tongariro's volcanic system. Slow shear-wave velocities, on the order of 1-2 km/s, are consistent with both P-wave velocities from existing velocity pro files of areas within the TgVC, and the observations of worldwide studies of shallow volcanic systems that used ambient noise cross-correlation.  A persistent observation across the majority of our dispersion measurements is that group velocities of the fundamental mode Love-wave group velocity measurements are slower than those of fundamental mode Rayleigh-waves, particularly in the frequency range of 0.25-1 Hz. Similarly, first higher-order mode Love-wave group velocities are slower than first higher-mode Rayleigh-wave velocities. This is inconsistent with the differences between synthetic dispersion curves that were calculated using isotropic, layered velocity models appropriate for Ruapehu and Tongariro. We think the Love-Rayleigh discrepancy is due to structures such as dykes or cracks in the vertical plane having greater influence than horizontal layering on surface-wave propagation. However, several measurements where Love-wave group velocities are faster than Rayleigh-wave group velocities suggests that in some places horizontal layering is the stronger influence.  We also observe that the differences between the Love- and Rayleigh-wave dispersion curves vary with the azimuth of the interstation path across Ruapehu and Tongariro Volcanoes. Some significant differences between Rayleigh-wave velocities of measurements with different interstation orientations are also observed, as are differences between Love-wave velocities. This suggests a component of azimuthal anisotropy within the volcanic structures, which coupled with the radial anistropy makes the shear-wave velocity structures of Ruapehu and Tongariro Volcanoes anisotropic with orthorhombic symmetry. We suggest that further work to determine three-dimensional structure should include provisions for anisotropy with orthorhombic or lower symmetry.

History

Copyright Date

2016-01-01

Date of Award

2016-01-01

Publisher

Te Herenga Waka—Victoria University of Wellington

Rights License

Author Retains Copyright

Degree Discipline

Geology

Degree Grantor

Te Herenga Waka—Victoria University of Wellington

Degree Level

Masters

Degree Name

Master of Science

ANZSRC Type Of Activity code

970104 Expanding Knowledge in the Earth Sciences

Victoria University of Wellington Item Type

Awarded Research Masters Thesis

Language

en_NZ

Victoria University of Wellington School

School of Geography, Environment and Earth Sciences

Advisors

Savage, Martha