Open Access Te Herenga Waka-Victoria University of Wellington
Browse
thesis_access.pdf (3.9 MB)

Electronic Structure of the Rare-Earth Nitrides

Download (3.9 MB)
thesis
posted on 2021-11-10, 02:53 authored by Preston, A. R. H.

The rare-earth nitrides (ReNs) are a class of novel materials with potential for use in spintronics applications. Theoretical studies indicate that among the ReNs there could be half-metals, semimetals and semiconductors, all exhibiting strong magnetic ordering. This is because of the complex interaction between the partially filled rare-earth 4f orbital and the nitrogen 2p valence and rare-earth 5d conduction bands. This thesis uses experimental and theoretical techniques to probe the ReN electronic structure. Thin films of SmN, EuN, GdN, DyN, LuN and HfN have been produced for study. Basic characterization shows that the films are of a high quality. The result of electrical transport, magnetometry, and optical and x-ray spectroscopy are interpreted to provide information on the electronic structure. SmN, GdN, DyN are found to be semiconductors in their ferromagnetic ground state while HfN is a metal. Results are compared with density functional theory (DFT) based calculations. The free parameters resulting from use of the local spin density approximation with Hubbard-U corrections as the exchange-correlation functional are adjusted to reach good agreement with x-ray absorption and emission spectroscopy at the nitrogen K-edge. Resonant x-ray emission is used to experimentally measure valence band dispersion of GdN. No evidence of the rare-earth 4f levels is found in any of the K-edge spectroscopy, which is consistent with the result of M-edge x-ray absorption which show that the 4f wave function of the rare-earths in the ReNs are very similar to those of rare-earth metal. An auxillary resonant x-ray emission study of ZnO is used to map the dispersion of the electronic band structure across a wide range of the Brillouin zone. The data, and calculations based on GW corrections to DFT, together provide a detailed picture of the bulk electronic band structure.

History

Copyright Date

2010-01-01

Date of Award

2010-01-01

Publisher

Te Herenga Waka—Victoria University of Wellington

Rights License

Author Retains Copyright

Degree Discipline

Physics

Degree Grantor

Te Herenga Waka—Victoria University of Wellington

Degree Level

Doctoral

Degree Name

Doctor of Philosophy

Victoria University of Wellington Item Type

Awarded Doctoral Thesis

Language

en_NZ

Victoria University of Wellington School

School of Chemical and Physical Sciences

Advisors

Ruck, Ben; Trodahl, Joe