Open Access Te Herenga Waka-Victoria University of Wellington
Browse
thesis_access.pdf (38.36 MB)

Rhenium-osmium geochronology and isotopic systematics in New Zealand source rocks and oils

Download (38.36 MB)
thesis
posted on 2021-12-09, 07:15 authored by Enock Rotich

The Re-Os radiogenic isotope system has over the past three decades been successfully applied to organic-rich sedimentary rocks and oils as a geochronometer and geochemical tracer. The Re-Os geochronometer has provided a direct way of constraining the depositional age of organic-rich sediments as well as the timing of oil generation events. Osmium isotopic compositions have further been utilised in understanding past climatic, oceanographic and geological events recorded in sediments, and in correlating oils to their source. Thus far, however, Re-Os studies of organic-rich sediments have mainly focused on marine black shales where Re and Os are primarily sourced from seawater. The work presented in this thesis seeks to investigate factors controlling Re-Os systematics and potential for geochronology in a range of fluvio-deltaic coaly rocks and terrestrial organic matter-dominated marine sediments, and associated oils from New Zealand’s Taranaki and East Coast basins. The Re-Os data presented here yield the first radiometric age for the late Paleocene Waipawa Formation (57.5 ± 3.5 Ma), a marine sedimentary unit that was formed by episodic input of large amounts of terrestrial woody plant matter resulting in high average sedimentation rates of up to ~10.6 cm/ky. This age is consistent with available biostratigraphic age determinations. The formation possesses Re (38.9 ± 17.6 ppb) and Os (526 ± 75.8 ppt) concentrations similar to those found in typical marine sediments containing amorphous organic matter deposited under much lower sedimentation rates. This indicates that organic matter type and sedimentation rate may not play a significant role in sequestration of these elements in organic-rich sediments. Unlike the Waipawa Formation, coals and coaly mudstones with varying degrees of marine influence (purely terrestrial to strongly marine-influenced) from the Rakopi, North Cape, Farewell and Mangahewa formations record low average Re (0.37 ± 0.25 ppb) and Os (24.5 ± 11.9 ppt) concentrations. These concentrations are up to two orders of magnitude lower than those of similarly marine-influenced coals from the Matewan coalbed, USA, suggesting that Re and Os enrichment in coals does not simply correlate with the level of marine influence; the timing and nature of the marine influence, as well as chelation ability of organic-rich sediments, are equally important. The initial 187Os/188Os (Osi) values for the Waipawa (~0.28) and underlying Whangai (~0.36) formations are broadly similar to those reported for coeval pelagic sediments from the central Pacific Ocean, further constraining the low-resolution marine 187Os/188Os record of the Paleocene. A broad correlation between this record and global temperature (δ18O and TEX86) and carbon isotope (δ13C) records is observed from the middle Paleocene to early Eocene, which is inferred to reflect climate-modulated changes in continental weathering patterns. Unlike the marine sediments, significant variations are noted in the Osi of the Taranaki Basin coaly rocks. These are linked to depositional and diagenetic conditions, degree of water connectivity with the open ocean, and sediment source. The large variations in Osi values combined with small ranges in 187Re/188Os ratios and relatively young ages are considered as factors that hindered development of Re-Os isochrons in these rocks. Crude oils sourced from the Taranaki coals and coaly mudstones also record low average Re (0.31 ± 0.09 ppb) and Os (14 ± 7.6 ppt) concentrations and have 187Re/188Os and 187Os/188Os ratios that do not correlate on an isochron diagram. The lack of an isochron fit for these oils is mainly attributed to a large variation in Osi values (0.47-1.14) resulting from the heterogeneous nature of their potential Rakopi and North Cape coaly source rocks and a lengthy (20 Myr) oil generation event. These Osi values, however, overlap with 187Os/188Os values for the potential source rocks at the time (ca.10 Ma) of oil generation (0.38-1.26), suggesting that Os isotopes may be utilised in tracing these oils. Crude oils that have potentially been sourced from the Waipawa and Whangai formations record much higher Re (2.86 ± 1.92 ppb) and Os (166 ± 142 ppt) concentrations than the coaly-sourced oils, and show Os isotopic compositions that either correlate with those of their potential source rocks (e.g., oil Osi = ~0.63 compared with Waipawa Formation 187Os/188Os = 0.48–0.68 at time of oil generation) or differ due to likely secondary alteration processes within the reservoir such as thermochemical sulfate reduction (TSR).

History

Copyright Date

2020-01-01

Date of Award

2020-01-01

Publisher

Te Herenga Waka—Victoria University of Wellington

Rights License

Author Retains Copyright

Degree Discipline

Geology

Degree Grantor

Te Herenga Waka—Victoria University of Wellington

Degree Level

Doctoral

Degree Name

Doctor of Philosophy

ANZSRC Type Of Activity code

3 APPLIED RESEARCH

Victoria University of Wellington Item Type

Awarded Doctoral Thesis

Language

en_NZ

Victoria University of Wellington School

School of Geography, Environment and Earth Sciences

Advisors

Handler, Monica; Naeher, Sebastian