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Abstract

The longterm sustainability and security of food sources for an increasing human population will
become morechallenging as climate change alters growing and harvesting conditions. Significant
infrastructure changes could be required to continue to sugpbd from traditional sources.
Fisheriesemains the only major protein supply directly harvested from the wiiluslikely makes it

the most sensitive primary sector to climate chan@eerfishings an additionatoncern for

harvested species. Theredaseed to anticipate how marine species may respond to climate change
to help inform how management might best be prepared for shifting distributions and productivity
levels. The most common respansf mobile marine species to changes in climate is &madion of
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promote atimely development of more sustainable harvest strategfsdditionally these

predictions couldeducepotential conflictwhen differentmanagement areas experience increasing
or decreasingatches. Ecologictliche Modelling (ENM) is a helpful approachgoedicting the

response of key fishery speci@sclimate change scenarios

The overall aim of this research was to use the maximutnogty method, Maxent, to perform ENM
on 10 commercially important fishegpecies, managed under the Quota management system in
Aotearoa (New Zealandpccurrence data from trawl surveyss used alog with climate layers

from BicORACLE to estimate theegjes nichend then predict distributions in four different future
climate scenarios, called Repestative Concentration Pathwayé&narios (RCPS), in both 2050 and
2100.With little consensus oveahe bestsettings and way to apply the Maxent method, hundreds of

variations were tried for each species, and the best model chosentfiahexperimentation

In general, Maxent performed well, with evaluation metrics for best models showing little iomiss

error and good discriminatory ability. Theweas,however,considerable variation between the

different species responses to the future climate scenarios. Consistent with other studies, species

able to tolerate suHropical or temperate conditions teretl to e)pand southward, while sub

antarctic species generally contractadthin their preferred environmentThe increasing emissions
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from modern predictionsNorthem regions of prediction, where stbopical or temperate species

increasel in probability of presence, were often highly uncertain due to novel conditions in future
environments. Southern regions were usually less uncergiriacetemperature corsistently

influenced base models mosdthan any other covariates considered, with the exception of

bathymetry.



Sme predictionsshowedcommon areas ofelative stability,such asokiandling on the southern
Chatham Risepotentially indicatiig future refugia The preservation of habitats in the putative
refugia may be important for longerm fisheries resilience. Furthermore, most species that showed
large predicted declines are currently heavily harvesiad managedOverfishing could compound
the effects of climate change and put thedisheries at serious risk of collapsdentification of
potential refugial areasouldaid strategyadjustments to fishing practige help preservestock

viability. Additionally, when some species shift, there areeas where new fisheries may emerge.

This study offers a perspective of what future distributions could be like under different climate
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continue to rise thraghout the centurywill have a negative impact onuttiple aspects

distribution. Howeverijn a reducedemissionsscenario, less extremmnge shiftsare predicted This

study has provided a predictive approach wvhfisheries in Aotearoa might changkhe next step is

to determine whether there is any evidence for the beginning of these changes and to consider how

fisheries might best adapt.
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Chapterl: Introduction

1.1: Climate Changémpacts on the Marine Environment

Anthropogenic climate change has become the forefront of most reseglattally, is topical in
mainstream media, ant the source of much politicdebate Anticipating changes in global climate
and impactsnaybetter enablesociety to prepare and undergtd what will be required to adapt
Discussions of climathange impacts havesen disproportionately focussed on terrestrial
ecosystems and specieshileimpacts m the marineenvironmenthasoften been undefreported
(Turraet al.,2016; Donelsa et al., 2019; Frost et al., 201Rpbinson gal., 2011)Recently however,
concernshave been raised in mainstream media repatut the effectf global climate change
on marine environmentgBeck, 2018; May, 2019; Neilson, 2019; Stevens & Noll, 20H% 2019
study by Cheng et a2019)suggestedthat the marine environment is being impactésla larger
extentthan waspreviouslyexpected Impacts on the marine environment includaut are not
limited to, rapid ocean warmingrising sea levelgcean acidificationdeclining oxygen leveland
primary productivity shift4Cheng et al., 2019; Free et al., 20ll8w et al., 207). There is an urgent
need to understandhe implicationsof these changes omarine species ecosystemsspecially

those that suppa valuable fisheries

Spedesthat cannottolerate changedo their environmental conditions usualhgspond by shifting
their geograghic range including withdrawal to areas of fiegia,and/or adaptto the altered
conditions(Donelson et al., 2019; Nogu&savo et al., 2018)n the absence of thedgpes of
responses, extirpation or extinctiaf species or populationmay occur(NoguésBravo etal., 2018)
Phenotypic plasticity oaltering phenologymay permit species to temporarily persist in an area and
avoid moving or adaptin¢Crozier & Hutchings, 2014owever,persistence througlextreme
environmentalchangewill likelyrequire more permanenadjustmentandor a combination of these
responsegCrozier & Hutchings, 2014; Donelson et al., 20I8¢ current rate ofhe chandng

climate isnot conducive to adaption unless rapalpossibility reservetbr species with high
reproductive ratesand short generation time® Nbed#Nd SR Q  A(GofwttkeABariete RIA3S &
Crozier & Hutchings, 2014; Reznick & Ghalambor, 208ik) andthe mobile nature of nest marine
organisms often undertaking long distance grations or being dispersed by pelagic larvae in ocean
currents,suggests distribution shifts withore frequentlybe observedas responses of marine

species to climate chand®onelson et al., 2019; Hiddink & Ter Hofstede, 2008)

Many marine spciegistributions are dynamic and strongly linkedtemmperature preferences
(Cheung et al., 2012; Sunday et al., 20B2though ocean warming will havaned effects on

different marine taxgFree et al., 2019)atitudinal and depth range shifts in response to ocean
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warming have already been observed numerous tiff@&seung et al., 2012; Dambach & Rddder,
2011; Jung et al., 2014; Mey et al., 2018; Perry et al., 2008)ostly poleward shifts have been
observed and are expected to increase, with species irpalgr regions at high risk of extinction
due to invasion and competition from speci@arently intemperate and tropicategions(Cheung et
al., 2009; Cheung et al., 2013; Morley et al., 2018}his case, this pattern would result in an
increasing dormance of warm water species, a phenomenon cafledpicalisatiore (Cheung et al.,
2012; Cheung et al., 2013)hese large scale redistributions are likely in response to physiological
stress or change in food alability due to highetemperatures(Plaganyi, 20190ther factors
associated with ocean warming, such as ocean acidificahdir@duced oxygen cono&ation, are
expected to compound warming effedfidofmann & Schellnhuber, 2009jhe resulting changes in
species composition and richness will likely substantially imijpstetries worldwidgCheung et al.,
2009; Dambach & Rodder, 201 8s species shift across current management boundaries, conflicts
and management disputes may arise over catch alloca(iBeH et al., 2014; Miller & Munro, 2004)
Furthermore overfishing of shifted populatiom®uld further compromise the resilience of species

already contracting in response to warmentperaturesFree et al., 2019)

Global productivity ofmarine fishes has declined and is expected to continue to do so as a result of
climate changand other anthropogenic factor@-ree et al., 2019Howeverchange in productivity

are expected to vary in different regio(Blanchard et al., 2012; Cheuagal,, 2016; Moore et al.,
2018). Decline of fisheries productivigoinciding withhuman population increasesill almost
certainlyreduceper-person seafood availabilifPlaganyi, 2019)n future, slitable responssto
redistribution of fisheries worldwide could alleviate some pressanéisheries.Implementation of
effective management strategies and adaptation requires better understandifig afK S NA S a Q
responses to climate chang€heung et al., 2013Anticipating redistribution of key fishery species

is a first stepn achievinghis. Toolssuch as Ecological niche modelling (ENidy allowbetter
anticipaion of species shifts in response to climate charlgM hathe potential to aid

development of sustainable management practigesesponse to changing climates

ENMor Speciedistribution Modelling(SDMj allowsexploration ofpossible range shifts and

species overlapby predictingspeciesHdistributions based on correlations between environmental
covariates and speci€sccurrencesENM has also been used to aid species delimitation (Raxworthy
et al.,2007), invasive speciasudies (Thuiller et al., 2005), conservation planr(ingdsay et al.,
2016;Moore et al.,2016) phylogenetics (Graham et al.2004)and populationgeneticsstudies

(Mestre et al., 2015McCallumet al.,2014) SeeGraham et al(2006)and MartinezMeyer et al.
(2004)for other purposesincreased use of ENM predict specie@esponses to future

environments hascoincided withincreased data accessibility, technological advancements and rising

11



concerns hout climate chang. Unfortunately,far fewer marineENM studies have been done than
terrestrial studies(Robinson et al2011),andin 2017 onlyl7%of thesehad been donespecifcally
asclimate changeinvestigationgRobinsoret al., 2017) ENM as a tool to predicesponses to

climate changeén the marine realm is an underutilisedsource.

Lack oimarineENMstudiescouldbe attributed to thedifficulty in collecting occurrencgata
compared toterrestrial environmentgKaschner et al2006; Mannocci et al., 2018; Tyberghein et
al., 2012) Challenges ithe marine environmenthat restrict collection such as d@rity and depth,
have resulted iimmarine aurveyshistorically fallingoehind the terrestriabnes(Costello et al., 2010;
Zhang & Vincent, 201.ost marine ENMstudieshave beenperformed intemperatenorthern
regions particularly theNorthern Atlanticwhere survey effort is dastantial(Breece et al., 2016;
Bruge et al. 2016Robinson et al., 2017Jhere has been &ack of ENM studies iother regions with
high survey efforfor fisheriesmonitoring, such as South Africa apdrts ofSouthAmerica
(Robinson et al., 2017)dditionally, in regions likely to be substantially affectegbiential
poleward shiftssuch as tropical waters around Indonesia and AfidéM has rarely been utilised
(Barros et al., 2014This is likely due tavealth and institute énsityas well as lower survey effort.
Furthermore, éw marine ENM have been dompecific tothe Arctic, despitepredicted substantial
community conposition changespeciegCheung et al., 2009; Cheung et al., 2013; Morley et al.,
2018) In 2017 aly 10% of all marin&ENM studies had been irustralasiaandonly 4 out of 236
marineENMstudies done worldvde were specific to New Zealand. None of the New Zeahlan

studieswere investigations into climate change responé&sbinson et al., 2017)

Further eservatiorsto applyENMto marine environmerd may bedue tolack of fossil records or

genetic data from the marine environmenthich areoften used in terrestrial stiies to corroborate
predictions(Gavin et al., 2014However marine environments arenore mobile than the terrestrial,

from tides to ocean currds, and therefore supports greater potential for long distance dispersal

(Carr et al., 2003; L. Robinson et al., 20Mgst marine organismgenerally disperse farther and

faster than terrestrial speciesnd are nore likely to occupy greater amount of tharea available

with suitable habita{Donelson et al., 2019; L. Robinson et al., 2044 )a resultENMmay be

expected to predictarine specieduture distributionsbetter than those of terrestrial organisms.

Additionally, marine environmental dataandcanS 20 0GF AYSR FTNRY ONRIF Rm&aOl f &
modelled datasources, a benefit not as applicable for terrestrial studmdsich arerequired

frequently to includemicroclimate information (Robinson et al., 2011).
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*The termsENMand SDMmodel are often used interchangeably. Whia¢ tdistinction is and whether & i
important appearsan unresolved topic of debate (Peterson 2@@étersor2012 Elith & Leathwick 2009;
Franklin 2010; Sillero 2011; Aja& Peterson 2012; Warren 2012though the aim of this study is not to
characterise the ecological niche but to estimate the potéwiistributions, doing so requires niche estinsate
based on a set of variables (Petersd@12). Furthermore, interpreting how environmental changes ntiaif a
specieSresponse and influence distributions relies on niche theory because it assumesdationrbetween
the variables used and spedipstential geographic distribution®éterson 2012, Wienst al.,, 2009). Thus,
the phraseENMis used ratbr thanSDMin thisthesis

1.2: ENMAlIgorithms

A wide variety of ENMIgorithmsare now available and easily accessible. These indlggeithms

that use Presence Absence (PA) daiah as generalised linear mod@ielder & Wedderburn,

1972; Zuuet al, 2010) generalised additive mode{Zuur et al, 2010)andartificial neural networks

0 5 QK Setdl, 2008 Fukudat al, 2013) Others are able to utiliseresence Only (PO) data such

as BIOCLINBooth1985; Boottet al,, 2014; Parrat al.,2004) DOMAINCarpenteret al,, 1993;
Segurado & Araujo, 200M1axent(Phillipset al., 2006; Phillipet al, 2004) and GARPAnderson,

2003; Peterson, 2001PA chta contains botlspecies presence andlasence information and is

usually collected in a systematic and targeted manner. PO data does not contain absence
informationand s usuallymore inconsistent and spatially biastthn PA data. PO data howevsr

more easily collected andireadily available from museums, herbariums, and online sources like the

Global Biodiversity Information Facility (GBifp://www.gbif.org) dataset(Elith et al., 2006)

Algorithms that utilse PO data are therefore more easily utilised and PO data is a valuable resource,

given the challenges of using it asgercome(Elith et al., 2006)

In 2017, the most used ENM software was Maxent, the popularity of whichuiassantially

increased since its introduction in 200Bobeyn et al., 2019; Moralet al,, 2017; Phillips et al.,

2006) Maxent is a maximum entropy based machine learning algorithm that uses presence and
backgrounddata to predict the probability distribution of a species based on a given set of
environmental variableManzooret al.,2018) Although less mature, Maxent has efft performed

well compared with other ENM methodPervilleet al.,2018; Elith & Graham, 2009; Elith et al.,

2006; Phillips et al., 2006; Rewal.,2018; Shabaret al.,2016; Tarkesh & Jetschke, 2012)

particulaly on small sample sizést | LJIS6 9 DI dzo Setal,2001R) However, the@ hash 2 y
been particular contention around whether Maxent or GABEnetic Algorithm for Rulset

Prediction issuperior(Chikeremaet al, 2017; Petersomt al.,2007; Ray et al., 2018; Terribile &

DinizFilho, 2010)Most studies seem to favour Ment and claim itachieesbetter predictions
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(Elith & Graham, 2009; Phillipsal., 2006; Ray et al., 2018; Tarkesle&chke, 2012)Those that
favour GARP either only use AUC statistics to evaluate mfikrisbile & DiniZ=ilho, 2010)an
evaluation metric thahas been criticised when used exclusiVglgboet al.,2008; Petersn et al,,
2008) or received criticism for incorrect use of the M (Peterson et al., 200PRhillips, 2008)
This was usually related to background dase,insufficient replicates or failing to utilise the
flexibility of Maxent by relyingon defaultsettings (Anderson, 2015; Anderson & Gonzalez, 2011;
Peterson et al., 2007; Phillips, 2008)udies favouring Maxent often explatenore setting and
features of the softwardElith & Graham, 2009Without considering key settings that che

altered to suit the datathe utility of Maxent is often underestimate@\nderson & Gonzalez, 201
Chikerema et al., 201 7rurthermore, ENMtudies in generadarely attempt to estimate uncertainty
in their predictionsyeducing the ability to identify methods or models that produce more or less

robust predictiondCheung et al., 2016; Morley et al., 2018; Plangual., 2011)

1.3: Target Species

This thesis considers a range of species managed und&faheZealan@uota Management
System (QMS$)n New Zealand Nlew Zealangfor whichtheir occurrence recals are regularly
collectedduringfisheries research travdurveysby the National Institute of Watr and Atmosphere
Research LtdNIWA. These speciesere chosen due to their prevalence in literedyvariedlife
historiesand other biological traitsand diverséemperature and depttpreferencesso as to have a
range of species to compare éuwontrast.Target speciesclude inshore speciespapper john

dory, trevallyandtarakihiusually found atlepths of less tha200m, and a number of deepvater
speciessuch ascampjorange roughyhoki, ling, southern blue whitingand a species dMew
Zealandarrow squid Each of these species amrognised as important fisheriesiew Zalandand
many have recreational and/or cultural val(feisheries New Zealand018) Species aréisted with
their most commonly used nama, n 2 axd scientific names respectively. Where the common and

a n 2rddes were the same only this was used.
Snapperor tn Y dz{CBrysophrys auratuBorster, 1801)

Snappeiare in the Sparidae familyade p of 38 Genera, and 159 specidistributed througlout
tropical and temperate Atlantic, Indian, and Pacific Ocd&asil, 1986)Snappeare one of the most
commercially viuable inshore species Mew Zealanddistributed mainly from the top afll to top

of Sl(Parsons et al., 2014%nappeare mostly prevalent in arm waters, and appear to have
increasedgrowth, survival and recruitment success in warmer watéislderet al, 2005; Francis,
1993; Parsons et al., 2014he same specigsalso found around coastal Austaiand some Pacific

Islandg/Ashtonet al,, 2019; Sumptomt al., 2008) They are derarsal fish with a depth range down
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to 200m butaretypicallypresent in15-60 m(Parsonst al., 2014; Smitlet al, 1978) Snappeare
relatively slow growing and long livesbacting maturity ataround3-4 years andnay live for up to

60 yearqParsons et al., 2014)
Hoki (Macruronus novaezelandiaklector, 1871)

Hokiare in theMerlucciidaefamily, made up of 24 species and 5 Generayridisted throughout the

Atlantic, eastern Pacific, Tasmania and New Zealaftein in subantarctic waters(Alyling & Cox,

1982) As anabundant commercial finfish speciesNiew Zetandwaters,hokiA & b Sé %SIt | YRQA&
largest fishenand is exported lhover the world(Dunfordet al.,2015;McKenzie, 2017Hokiare

widely distributed throughait New ZealandExclusive Economic Zoaedepthsfrom 50- 1000m,

although they are typically caught betwedf0-600min southern regionspreferring cooler water

temperaures (Hameret al, 2012) Hokiare relatively fastgrowing reaching maturity aB-5 years

and living for up t@5 yeardMcKenzie, 2017)
Orange roughyor nihorota (Hoplostethus atlanticusCollett, 1889)

Orange roughyare part of theTrachichthyidagamily, consisting of @ispecies and 8 genera
distributedin temperateoceansworldwide (Tingley & Dunn, 2018Prange roughwre widely
distributedglobally but absent from northern Indian and Pacific Ocg&nanch, 2001; Kulket al,,
2003; Laptikhovsky, 200Robertset al,, 2015; Varelat al, 2013) InNew Zealandhey are
widespreadrom depths 0f450-1800m, althoughusually caughbetween 700-1300m (Branch,

2001) Orange roughwgre slow growing andxceptionallylong lived, known to livevell over 100

yeas (Andrews & Tracey, 200Bndrewset al,, 2009 Tingley & Dunn, 2018PDrange roughir 2 y Q (i
tend to reach maturity unt 30-40years, and have low fecundi(Branch, 201; Tingley & Dunn,
2018)

Tarakihi (Nemadactylus macropteruborster, 1801)

Tarakihiare part of the Cheilodactylidae family, wigff speciesnd 4 genera, distributed in
subtropical and temperate watetsoth northern and southern hemispheréRobertset al., 2015.
Tarakihiare widespreadand commercially important marine fish New Zealanénd southern
Australia(Burridge & Smolenski, 2003)hey are typicalljound on the continentalshelfat depths of
80-100m but known depthlangeisfrom 10 up to 50m (Beentjes, 2011; Burridge & Smolenski,
2003; McKazie et al., 2017)Tarakihhave high fecundityare relatively fasgrowing, mature at 6
years and live upwards of 35 yegBurridge & Smolenski, 2003; McKenzie et al., 2017)

Trevally or araara(Pseudocarar georgianusCuvier, 1833)
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Trevallyare part of theCarangidae family, with 146 species and 30egandistributed in tropical
waters in the Atlantic, Indian, and Pacific ocefRebertset al,, 2015. Trevallyare one of New
%BSEEFYRQE Y2ad AYLR NIy i (FiéheriesNewZealdnd)18h Rundig NS
northern New Zealan@nd other areas throughout the world, although there is much confusion and
inconsistency wheraaming of this species is concerned throughout the wfidheries New
Zealand2018) Trevallyare most ommon at depths o&pproximately80m, although their @pth
rangeis thought to be 10 238 m(Mundy, 2005) Trevallycanreachover40 years of agéFisheries
New Zealand2018)

Sampiz NJ 1 I dzZNEtdheplirépas challengeBalss, 1914)

Scapiare part of the Nephropidae familyyith 18 genera and 18speciedistributed throughout
both southern and northern hemispheréBellet al., 2013; Tshudy, 2003n New Zealangscampi
are of high value, particularly as an exported spe€iesket al., 2015;Van der Reigt al,, 2018)
They are generally found at depths of 2600m on muddy areas of the contmtal slope around
eastern and westerfNew Zealangdincludingthe Chathanislands(Bell et al., 2013; Major & Jeffs,
2018; Tshudy, 2003; Tuck et al., 20B5ampican live for up to 15 years, reaching maturity at 3
years(Cryer & Oliver, 2001and are known to haview fecundity(Phillips, 2008)

John doryor kuparu (Zeus fabetinnaeus, 1758

John doryare part of theZeidaefamily, with 6 species and 2 gera, distributed in the Atlantic,
Indian, andPacific Oceangdeemstra, 1980)Johndoryis distibuted widely worldwideusually
found less tlan 200 m deegMaraveliaset al., 2007; Rdford et al,, 2018). In New Zealandhey are
distributed mainly around the NI and northern(®unn & Jones, 2013John doryhave been found
to live up toeightyears inNew ZealandCaton & McLoughlin, 200@nd mature at 45 years(Ismen
et al, 2013)

Southern blue whiting(Micromesistius australidNorman, 1937)

Southern bluewhiting are in the &mily Gadidag which has23 species and3 genera distributed in
sub-antarctic water in the Arat, Atantic and Pacific oceans at depths eB@0m(Alyling & Cox,
1982) Southern bluavhiting occur in subantarctic waters off SoutAmericaand southeast oNew
ZealandHanchet, 1999; O'Driscat al,, 2016) NewZealandsouthern blue whitingare a major
fishery with substantighnnuallandings(Fisheries Nw Zealang 2018 O'Driscoll et al., 2016)
Sauthern bluewhiting are known to aggregate at 2€8D0m (O'Driscoll et al., 2016They usually live
to around 15 years but have been found to liyeto 25, and mature between2 yeargFisheries
New Zealand2018)
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Ling or hokarari (Genypterus blacodeBorster, 1801)

Lingare part of the &mily Ophidiidae with 258 species and 50 genera, found in thiamtic, Indian

and Pacific ocear®oberts, 201} Lirgare found in depths of 16800m n the southen Pacific and
Atlantic oceangDunnet al,, 2010) The maximum recorded age flingin New Zealands 46

Ff 6K2dzZAK GKS@& R2y QDunh &t alS3010f Hord, 2008 ¢Endve Telativelydo® I NE
fecundity compared to other deep water speci@aredes & Bravo, 2003 okj arrow squidand

scampiare common components of their diet Mew ZealandFisheries New Zé&mnd, 2018).
New Zealandarrow squidor wheketere (Nototodarus sloaniiGray, 1849

Arrow squidare part of thefamily Ommastrephidagwith 11 Genera and 21 species, found in all
oceans of the worldJereb & Roper, 2005; Ropetral,, 2010) N. sloaniis endemic toNew Zealand
andfoundsouth of the convergence zongp to 600m depth(Fisheries New Zealan2018).
Juvenilesare found inshallower waters of <200ifDunn, 2009)They ive to around 1 yearhave
rapid gowth andmature around200 dayqgDunn, 2009)There is a second closely related spedies,
gouldi, which closely resemblds.solanj making it diffcult to differentiate (Fisheries New Zealand,
2018).N. gouldiis generally found further north and on the west coéSisheries New Zealand,
2018) Although onlyN. sloaniwas modelled in thishesis discussion ohow mistaken identificabn

between these two species may have affectegsultshas beerincluded

1.4: Thesis Objectives

The overall objective of this study is to establish a better understanding of how BemeZealand
marine speciefcluded in theNew ZealandQuota Management System &)may respond to

future climate changeThe specific aims of this thesi®re as folbws:

1 Toappropriatelycollateand examinanarineclimate andfish occurrencedata for use with
the Maxent modelling method

1 To perform ENM on each target species undiffierent parameters in order téind a model
that best represengd the ecological nich of the target species

1 To project best models for each species onto four different future climate scenarios
(Representative Concentration Pathway Scenarios) in dodeisualise their response

1 Toconsiderthe validity and reliability ofhe future predctions.
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Chapter 2: Methods

2.1: Workflow overview:

Model
training

with Model
modern evaluation
climate and
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data at & crop to
desired study
resolution region

Figure 2.10verview of the methods

2.2:0Occurrence Ata

2.2.1:Preparing Occurrence Data

Occurence data folNew Zealand marine fishery specigsre obtained from the fisheries New
Zealand database, which holds operational details, catch, and biological sampling data for all
governmentcommissioned, research trawl survegsmmary of the major survesgries within this
dataset can be found iBeentjes and Stevenson (200&)unn, Rickard, Sutton, and Doonan (2009);
a2NNAaz2ys {(iS@Syaz2ysz IyR I IFyOKSG onHnnmO;Bndh Q5 NA & C
Stevenson and MacGibbon (2018hese data were providedby NIWA (M. Dunn)The total
geographical coverage ofiddataset is presented in Figure2 Thisdatasetcontained 66(005

catch records of B92 different marine species caught betwedd60and 2017 although most were
caught after 198@Hgure 23, AppendixA.1). Depthof recordsranged from 2m to 273 (Figure

2.4). Any record with an assignatpth that when plottedwith depth contours appeared to be an
error, was removedFull summary informationf these occurrence recordsn be found in

AppendixA.2.

Using RStudioversion3.5.1, occurrencerecords were filteredand only those collectedfrom bottom
trawlsand high openindpottom trawls were keptso that579435records remained. &ords where
other gear methods were usedere excluded Only recordswith excellent or satisfactorgear

performance as per the trawl database docwentation byMackay (2011 were kept so that
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545077remained. Records with NA or zeros as coordinates were also remouedtshe finaltotal
number of records in the entire dataset wa43,909. This filtering was donfor consistencyof
geographic comparisons and to retain only highality data.The dataset was then subsiey species
into separate files for each dhe tentargetspecies. The files were then reduced to only the
coordinate information for each species, in order to produce the necessary input files for the
MAXENT modelling softwa(Phillipset al., 2004) A summary of the number of occurrence records

for each species, before further processing is provided in Table 2.1.

Figure2.2: Totalgeographicoverage obccurrenceof species records ithe New Zealand region
from the MPI trawl datset (rovided by NIWAM. Dunn)
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Figure 2.3Total rumber ofoccurrencerecords(y axis) collected per year (x aXigimthe New
Zealand regioifrom the MPI trawl dataset (provided by NIWA, Dunn).
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Figure2.4: Maximumdepth of recods (A) and minimum depth of records (B)New Zealandyith
depth (x axis) and frequency of occurrence (y axitjecords inthe total occurrence dataset

provided by NIWA (M. Dunn)

2.2.2:Satial Biasin the QccurrenceData

Assumptions about occurree data

A key assumption in ENM is that occurrence data points are spatially independent from each other.

The presence addamping bias violates this assumptigBoriaet al., 2014; Carsten et al., 2007)

Unstructued sampling effort and recurrent sampling of more accessible areas are conmid
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datasets and result in biased dgfathianet al, 2015; Fourcadet al,, 2014) In the marine
environment, sample bias may arise due to higher levels of sampling inland, as it is more easily
accessibleor because of management prities. Locatiors distantfrom land ma be lessoften
samplda for practical reason§Corkeron et al., 2011; Derville et al., 201B)yrthermoreareas where
important commercial species dahcommonly occur are likely to be rarely sampl8dmpling bias
promotes envionmental bias by overepresenting environmental conditions associated with
regions (or time periods) that encompass clustered rec@rdd St f 2 mdt &l,201%;yBéria et

al., 2014; R. Hijmans et al., 2000; Kadme al., 2004; Reddy & Davalos, 200B) ENM this creates
models ovetfit to environmental conditions associated with clustered records and leads to
erroneous estimatesfdoth optimum conditions and vable response and influenc¢Boria et al.,
2014) Temporal bias maglsobe introducd if surveys are consistentljiays done at similar times,
T2NJ SEFYLX S 2yfe RdNAyYy3I O&oketohefal. 28l Dernylldet @ NI Ay W3
2018; Elith et al., 2011Pn further inspection,ttese data appeaed to be relatively consistent with

yearround sampling Appendix2.3).

Similarly, itsassumed in ENM that the sampled area reflects the entire range of conditions the
target species can tolerat@nderson, 2015)Iif sampling bigiresults in omission of large areas of a
speciesrange this assumption is unreasonable as these areabenitiistakenfor regionsthat

' NBYy Qi duguifavoukablé&cBnditions. Thisften producesoverly conservative estimates of
suitable habitat, de to a narrowerange of environmentalanditions being associated with
occurrence record&@lso known asverfitting) (Radosavljeei & Anderson, 2014Y he following
sedions explain how sampling bias was addressed this study, so that these assumptions were more
acceptable. However, assumitige full range of areas with tolerable conditions are occupiegly

also be unrealistic ifidpersal barriers have prevented occumattiof suitable areaslhis study
assumed few or no dispersal barriers currently operating in the marine environment (that are not
included in the investigated variable set) substantial enough to have magstiyicted any of the
target specieSability toinhabit its full range of ta@rable environmentTherefore, oncaccounting

for spatial bias had beeattempted, it was assumed that the occurrence datasstresented

spatially independengieographic locdiies associated with the full range of environntal

conditions tolerable for each species.

It isfurther assumel that within the species ranggche characteristics are similao that
environmental conditions associated with occurrences are withinstirae tolerance range. If
species are geneticglisolated or have begun to isolate and adapt to different conditions this may

be an issueAn ideal species for ENM is one with panmixia throughout its r§Rgelosavljevic &
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Anderson, 2014)The ability of the occurrence data to accurately represent the environmental niche
is compromised if recordsere mislabelledspecies werenisidentified coordinates wee entered
incorrectly,or if occurrence localitiewere not from a source habitat. tfccurrences were from a

sink habitat, the associatezbnditions would notepresentthose necessary to maintain its

population without emigration and may therefore exaggerate tolerance raijBealips et al., 2006)
Large datasets including repeated surveys, such as the one used here, reduce the influence of

recordswith errorssuch as thesagiventhere are fewin the dataset.

Addressingpatial biasMethod 1- Adjusing Background Extent

There are a variety of methods availakteattempt to account for sampling biaand ensure key
assumptions are mgMateoet al., 2010; Steven J Phillips et al., 2009; Syedl.,, 2013; VanDerWal
et al, 2009) Onecommonway is to adjust the backgrourfG)samples that Mxenttakes
(Anderson & Gonzalez, 2011; Anderson & R2040; Barvet al, 2011; Elith et al., 2011; Fourcade
et al., 2014; Mateo et al., 2010; Phillips et al., 200%)e to utilising?Q rather thanPAdata, Maxent
usesBGpointsduringmodeltraining instead of absengmoints (Elith et al., 2011Maxentcompares
the relationship between environmental variables at locations otiijpy the species with
independently and randomly select@&i{locations, where species presence is unkndgiierow et
al., 2013; Muscarella et al., 2014bility to differentiate between pesence and background
locations based on environmenteonditions largely determines the modwlality (Merow et al.,
2013)

By default, Mixentrandomly etractsBGpoints from theentire study region ancekvery pixel has the
same probabilitythat aBGpoint will be selected from itElith et al., 2011; Merow et al., 2013his
assumes the whole area was available for sangitd that thespecies werequally likely to be
found anywhere within the regio(Elith et al., 2011; Merow et al., 2013hese assumptions do not
hold true given sampling bias in the datas€b mitigate thisthe area whereBG points are taken
from can be adjuste@ierow et al., 2013Phillips & Dudik, 2008)

Adjusting the area where BG points are taken from allowsuser to exclude areas where there
were sutable conditions but species haubt been recorded either due to sampling bias or dispersal
barriers(Anderson, 2015; Anderson & Raza, 2010; Batat., 2011)As well as the default entire
background (EBG) methodyad established approachesf adjusting BG areasere trialled: the

Target Group Background (TGB@thod (Anderson, 2003; Phillips et al., 2006; Poneleal., 2001)
and the Restricted Backgroufi@BGmethod (Phillips, 2008)
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Target Group Background

This methodusescollective occurrence recordsrfmanysimilarspecieqthe target group) obtained

via the same method, from the same database, under the assumption that those surveys would have
recorded thefocusspecies had it occurred thef@nderson, 2015Andersonet al., 2003; Dudilet

al., 2006; Fitzpatrickt al, 2013; Phillips et al., 2009; Ponder et al., 2001; Syfert et al., 2B4Ad

on the occurrence records of the targeataip, the sampling distributioman beestimated. This

permits BG data tbe taken only from the area that was sampled, rather than the whole region. This
reducesthe potential for BG pointto betaken from areas with suitableonditionsbut no presence
records, thus reducing the tendency to over fitdovironmentalconditions associated wittsampkd
areas(Phillips & Dudik, 2008When using this method, the BG sdmgheoretically reflects and
therefore counteracts bias in the presendata(Dudik et al., 2006; Phillips & Dudik, 2008; Reddy &
Davalos, 2003; Zaniewskial, 2002) Others have found the TBGmethod significantly improves
model performance and reduced the effect of sampling Bidigh & Leathwick, 2007; Elith et al.,

2011; Phillips & Dudik, 2008)ere, the sampled area was estimated using the occurrence records of
allmarinespecies irthe trawl databaseas thetarget group filtered as peviously mentioned for

gear use and quality controh number of coordinates associated witbonirrence records this

target group were then randomly selected to bsed as BG points in model training to apply the
TGBGnethod (Figure 2.5B)Afile wasconstructedfrom these coordinate$or input into Maxent
Therefore, environmental conditions at the occurrence coordinates associated with the target
species were contrasted with the environmental conditions at BG coordinates associated with the

target graup during model training when thBGmethod was implemsted.

Restricted Background

This methods another way to adjust the area where BG points are taken from.ifios/ed

creating circular bounding buffer areas around each occurrence pdiatcetain userdefined
distancefrom each point, themmergingthese areasy dissolving interiolinesso that an overall area
encompassing all points remaid (Phillips et al., 2009BG pointsvere randomly selected from
within the mergedregionrather thanfrom the entire stug area.ln this way, the area from which
BG points could be taken was restrictdthis methodallowsthe BGdata tobetter reflectthe
occurrence datdias whichencourages better distinctionetweenpresenceand BGooints (Phillips

et al., 2009)

Variability inMaxEntpredictions produced with different background extelias been
comprehensively documente@nderson & Gonzalez, 2011; Andersona&& 2010; Baaseh al,
2010;Barve et al., 2011; Eliét al, 2010; Elith et al., 2011; Giovanetial, 2010; Merow et al.,
2013; Phillips et al., 2009; VanDerWal et al., 2009; \atak 2010) A nore limitedBGextent
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encouragedetter differentiation betweenconditions inoccupied and unoccupiesteas and
therefore better recognition ofdistribution limiting conditiongPhillips, 2008)Howeverhaving
more locd BG points increases model complexity and therefgapolation wha projecting the
model to a different environmentElith et al., 2011; VanDerWal et al., 2008)this study three
differentrestrictedbackground extents were trailed to find an optimastance: 10kn{RB@), 50km
(RBG2and 100km(RBG3)Thethree distances here were compared with ti&SE>andEBG
methods(Hgure2.5). Although the recommendedestricteddistance is one that reflects the
average dispersal capability of tfiecalspecies, these dataare not always availabléZenget al.,
2016) Additionally, it wasnore feasibleto trial the same set for each specjéisan to change ifor

each speciesding modelled in this study

A

Figure 2.5Plots of the New Zealand region withkamples of the different BG adjustment methogds
The circles indicate pdisthat wererandomly selected as BG poirttspendant on the method
used.A: EBG Default BG oéntire study regioh B TGBG, C Three differentRBGextentsaround
orange roughyccurrence pointas an eample;Yellow =JRBG110km), Red )RBG250km), Orange
=RBG3100km).

Addressinpatial biasMethod 2- Spatial rarefication

Spatialrarefication is another methoccommonly used to reduce sampling biagpresence only
datasets(Boria et al., 2014; Fourcade et al., 20I®)is involved adjusting the occurrence data itself
before usingt in the model. Spatial rarefication was chosen rather than spatial thinning due to
computational constraints of thinning on large datasdtee R package spThin was used to conduct
spatil rarefication using the function spRarefpielloLammens et al., 20B5A5t t 2 [ | YYSy &
2015b) Spatial rarefication was implemesd for each speciedataset, reducing occurrence points

to only ones a certain, user defined distance away from each ¢Bwnia et al., 204). This was

done byselecting a single record from each grid cell randamkeplicates of 10Increasing the

number of replicags did not change thpointsselectedor number of records that remained.
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Spatialrareficationwas comlucted due to the lege variation in the density of records between

sampledareas (seéigure 2.2. If thiswas not corrected the moddit would favour the conditions

where density of records was higind down weight conditions whie there wae fewer occurence

points. The am of rareficationwasto reduce effects of overrepresented localities in the dataset

without reducing the signal of areasith suitable habitafAiel2 m[ I YYSy & S i#nderfo®> H A mMp
2015) Rarefication shouldesult in more equal weigltgivento all areasand reduce the effect of

clustered records, which place artificial importance on the associated environif@minuch
rareficationhowevermay kad tosmoothing the distribution of tolerable conditions and therefore
overestimation of probabilitypf preserce (POPat the edges of distributions savell as

underestimation oPOPwhere conditions are most preferrg@ourcade et al., 2014)

The distance at wkh points are set away from eably rareficationother should depend on the
precision at which the data was tmdted and what is computationally feasible (Jeffery Hanson,
University of Queenslan@mail correspondence). In this casedistance of 10 km &s selected
because as the distance between the surveys tows that collected the datafteas3 nautical miles
(5.556 km), followinghe standard operating procedur@lurst et al., 1992; Stevens, 2014)each

tow was ~5 km, the midpointds to be at least ~5 km away in order for there to be no overlap
between tows (1 tow per 6.mile), so the minimum distance between each tow would have been
roughly 10knmd ! A St £ 2 m[ I Y Yb$ Vharef@dihisldistance wassrsalepted as the maximum
distance at which points should be set apart from each other. Finer spatial rarefication at 5km and

1km, wasalso trailed (@ble2.1).

Althoughrarefication deals withgeographi@lly clustered recordsit cannot account fothe omission
of areas of suitable habitat. Therefareimultaneously using rarefication and different background
adjustment methods (such as previously discussed TGBG or resBiGtetethodsjs potentially an
effective method tareducethe effect ofsample bia®n models Therefore combinations of these
methods were trailed for each speci€®e Table 22 for all combinations of methods used. Effective
reduction in sampling bias ehld result in a modelith less overfitting and bettepredictive

performance on independent evaluation dafaoria et &, 2014)
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Table2.1: Number of record$or each target specidsefore and after rarefication:

Species No rarefication 1!<m . 5!<m . 10kmrarefication
rarefication rarefication

Hoki 14250 13137 9483 6535
Shapper 3828 3099 1905 1171
Tarakihi 5249 5001 3732 2404
Trevally 1623 1368 964 683
Sampi 1535 1483 1286 1023
Crange roughy 9605 7554 3652 2093
Southern Blue Whiting 1675 1654 1562 1427
John Dory 3951 3360 2247 1402
Ling 10967 10520 8504 6106
Arrow Squid 4522 4338 3702 2854

Table 2.2Trial codes for Maxent runs shamg the combinations of background methods, including
Entire Background (EBG), three different Restricted Backgrounds (RBG) and Target Group
Background (TGBG), and species occurrence data variations, including all records<imoesud jtp
occurrence recats), removal of duplicates, and three spatial rarefication variations, used in Maxent

trials. These are referred to throughout the results section in chapter three.

BG method All records Duplicates Spatial Spatial Spatial
not included rarefication rareficgion rarefication

(20 km) (5 km) (1 km)
EBG la 2a 3a 4a 5a
RBGL(10 km) 1b 2b 3b 4b 5b
RB& (50 km) 1c 2c 3c 4c 5c
RB& (100 km) 1d 2d 3d 4d 5d
TGBG le 2e 3e de 5e

2.3:Climate Data

Obtaining and Preparinglimate layers

Marine data for themodern andpredicted futureclimates were obtained from BieORACLE

(http://www.bio -oracle.org/downloaddo-email.php (Assiset al,, 2018; Tyberghein et al., 2012)

These data were available at a resolution of 5 amin. It has been suggested that higher resadut
climate layers with finer grain sizes commonly give more accurate md@&anor et al., 2018;
Manzoor et al., 2018; Scales et al., 2017; Surgd, 2013)howeverthiswas all that waseadily
available ad easily accessibl®ata for2040-2050 and 2092100 were downloadedfor each

different RepresentativeConcentrationPathway ScenariRCEB). Thesefour climate scenarioare
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RCB 2.6 a decline in greenhouse gas concentrations,RCFand RCB6.0stahlisation of
greenhouse gas concentrations, and the BR&B, an increasingmissions scenari/an Vuuren et
al., 2011) Bicoracle provides both surface amgep sea environmentdhyers, howeveonly
surface ayerswere selectedor consistency across modebnd becausdeap sea environmental
datahas poorer collection coverag8eaSurface Temperatures{l) and Surface SalinityS9
covariates weraownloaded(12 variablesn total). Modern data vere also takerfrom Bo-ORACLE
of the same nature as the future data (5 amin, ST &SScovariates)Modern bathymetryclimate
layerswere downloaded from MARSPHE@tp://marspec.weebly.commoderndata.htmlSbrocco,
2014) and adled toall climate sets agepth datawere notavailableon BiocORACLE.

It is important to consider wich environmental factors are used to traENMs Themodel assumes
they areecolqically relevant tpindependent ofind have temporal correspondence tepecies
presence (Anderson, 2015; Phillips et al., 2006; Werkowskal., 2017) Temperature and salinity
were chosen as variables to use in this study as both frageientlybeen linked to marine species
distributions(Balzancet al, 2010; Golikoet al., 2013; Khart al,, 2013; Kimmerer, 2002; Kililtz,
2015; Lehtoneret al., 2016; Smyth & Elliott, 201@ncluding more variablesften increases
complexity and propensity favveffitting and complicaesinterpretation, whileadding littlefurther
information to predictiongWerkowska et al., 2017fFurthermore, tansferabilityof models when
projecting to different time periodslecreases with additionalariables\Werkowska et al., 2017fror
this reason, and for time and computational feasibility reasatiser variables from the large
selectionavailablefrom BiooORACL#ere na included Futthermore, predictor variables with varied
effect on species distributiorecross the modelled regiaguch agemperature average of the

warmest monthwere omitted, asreconmended by Peterson(2006 andPhillips et al.(2006)

Temporal correspondence between the occurrence dataset and the didat must also be
consideredTemperature and salinity datasets were assembled from climate data collected between
20022009(Tyberghein et al., 2012Although occurrence data was drawn frontaager time scale
(19602017) it was assumed thatwvo still relativdy correspondas most records have been

collected between 198@nd2017. Because of this and for the purpose of retaining as many records
as possible, occurrence data were not further filtetedoroduce a narrowecollection date range.
However it is a&knowledged thait is possible that there hae beenchanges irlistributionsor
environmentalresponses over this time perioA.species could be absent or depleted from an area

in some yearsvhere it recently residedue to depletion ofish stocksfrom fishing or other

distributional fluctuations over this time period.

Multicolinearilty between variableis often raised as an issue in EX\Merkowska et al., 2017)
Althoughcollinearity does notonsiderably}compromisemodel qualitywhenusing Maxen{De
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Marco & Nobrega, 2018t does complicaténterpretation of response curves and variable
contributions (Werkowska et al., 2017Lorrelations between variables were assessed using the
ENMTools R packad@/arrenet al, 2010) Almostall ST and SS variables wéighly correlatd with
each other (>0.85kxcept forSS range and ST RaijigppendixB.1 & B.2). Becausehe aim was to
investigatelongterm changemeanSS and SJovariateswverekept, and allother variables
correlated with them discardedsS range an8T range were also kept iiesewere not highly
correlatedwith other variablesand some species are influenced more by temperature extremes
than averagess drivers of rangehifts(Grieveet al,, 2016; Hareet al., 2010; Hareet al., 2012;
Morley et al., 2018a)Thus, aeduced variable set was assembtédt included bathymetry, SS
Mean, SS Range, ST Mean, and ST RAligeugh this set of environmeal variables may not be
sufficient to describe all parameters thfe fundamental niche fothe studyspecies, they will allow
approximateestimationof geograplic distributionsbased on a few key variablé@hillips et al.,
2006)

All climatelayers were subject to cropping and transformation in R Studision 3.5.1All
downloaded climate data was 80 to 180 format longitudinal format. In ord&r preseve all of
New Zealananarine space in the models and avoid-cfit at the 180International Date Lingthese
had to be converted to 0 to 360 longdinalformats. These were then cropped to include only the
desired study region and the final raster layamsre able to baused asnputs forthe Maxent

algorithm. Summary plots for the climate layarsed in this studgan be found iAppendixC

2.4:Model Assembly

2.4.1:Data Partitioning
I WYl &1SR 3S23aNF LKAOITf & &ad NHeo ihadBokh@cciRrenge-andLI: NI A
BG points were partitioned by geographic space. Occurrence amiB were partitioned into
four bins based ottheir position relative tdatitude andlongitude lines that divide occurrence
localitiesas equally as possi{Muscarella et al., 2014; Radosavljevic & Anderson, 2@ty
partitioning, four models were builtterativelyfor eachcombination of settings, usintpree bins for
model training and the withheld bin for testingiherefore the calibration localities @uld not be
next toor in the same geographic cluster @valuation localitiesnd thus wee independent from
each otheras recommended biRadosavljevi& Anderson (2014)This addresses the spatial
autocorrelation isge that often arises when using random cross validation. In random cross
validation evaluation data may be taken from ase# clustered localities (ieue to sampling bias),
and thus its independence from the calibration data is compiszd. This ofterelads toover-
inflation of performance valuds Y R R2 Say Qi | KBRrB d.5201%;|Rbbérs etfal., 0 A I &
2017) The background localities in the same geographic area asithieolding testing localities
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were not included in the training phagehillips, 2008Phillips & Dudik, 200&®adoswvljevic &

Anderson, 2014)This methoda OF f ft SR WwWaLJ ALt o6f201Ay¥3IQ YR Aa

autocorrelation between testing and training poir{Boria et al., 2014dijmans & Elith, 2013;
Wenger& Olden, 2012; Muscarella et al., 2014; Radosavljevic & Anderson, 2014; Veloz, 2009)
Spatial blocking is recommended when model transfer across time or spacplired, as it offers
more accurate extrapolation to conditions outside of those not used in mwdeling (Wenger&
Olden,2012; Muscarella et al., 2014; Zeng et al., 20Tk block method was implementersing
the R packagENMevaldescribed beloywusing the ENMevaluate functidiMiuscarella et al., 2014)

2.4.2:Maxent Runs
The MaxEnt software érsion 3.4.1yownloaded from

https://biodiversityinformatics.amnh.org/open_source/maxenwas used to perform ENNE is

necessary to perform species specific tuning when usingeayy triallinga variety ofdifferent
combinations okettings for each speci€Morales et al., 2017; Phillips & Dudik, 2008)e two

main paameters in Magnt that influence model results are regularization and choice of feature
class (fc). Reguliaation influences model complexity and affects how closely fit the model is. An
increase in the regularisation multiplier (RpBnalisescomplexityandconstrains ptential for
overfitting (Merow et al., 2013; PHips et al., 2006; Phillips & Dudik, 2008; Phillips et al., 2004;
Warren & Seifert, 2011)-eature class refers to thgpe of mathematical transformation ofariables
for modelling of complex relationshifklith et al., 2010} orfurther detailon feature classes see
Elith et al. (2011)

Torun MaxEnt trials the R package ENMeval was used. ENNMepliments Maxat via the dismo
package and allows users to test a variety of combinations of RMs and femapldies the process
of comparingmany models at a timéHijmanset al, 2011; Muscarella et al., 20148ach ENMeval
trail wasrun in parallel with RM values of 6&%in increments of 0.5, anal varietyof combinationsof
fcsincluding Linea(L) QuadratiqQ), Hinge(H), Froduct (P)and ThresholdT)feature classesThese
were'L',LQ','H',LQH',LQPLQPT', LQPHNd'LQHPT'

For each trial, 10,000back ground points wereandomlyselected from the specified background
extentasthis typicallyachieves optimal performanceElith et al., 2006)Itis suggested that more
pointsshouldbe taken for drgerdatasetsasmore BG pointsypicallyequates to improved model
predictive performancéElith et al., 2006 Becausailll species datasets used here hadlan10,000
records or just ovelincreasing the number of BG poiritem 10,000 wouldnostlybe redundant
(Dudiket al,, 2007)
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ENMeval runs werperformedusing the ENMevaluate functiam the five different BG treatments
(BBG, TBG, & thredlifferent RBG gtents) with fivedifferent occurrence datasets| localities, no
duplicates, and threspatially rarefiedy different distances)rable 2.2 shows a sumaryof these
method combinations usedcach run was performeaksing the modern climate layers obtained from
BiocORACLE. Sixteen RMs and eiglsombinations on these 25 different treatments regdin a
total of 3200 models run per specie32,000 ovexll.

2.5:Model Selection

Evaluation Metrics

After each ENMevaluateall, the function producga variety of evaluation metrics for each
combination of settings. One of the most important of these isAkaike Information Criterion
(AlCc). ThalCc is anodel selection uncertainty metric and refledisth goodness of fiand
complexity.AICc is the version of AIC that was developed to corredfallsample size, and

reduce the chances of the model beioger fitted (Breweret al, 2016) It is usedo find optimal

level of complexity and gives an overall indioatdf model qualitfRadosavljevic & Anderson, 2014;
Warren & Seifert, 2011)The philosophy underlying the AlCc metric is that models that fit that data
are rewarded while unnecessary parameters are penalfgéairen & Seifert, 2011 omplexity is
estimated based on the lambda file produced at the end of each model run, in which all the
parameters with a nonzero weight are counted to give the number of parameters(\gaden &
Seifert, 2011)AlCc is calilated onthe full setof localities (both train and te¥so is not affected by
partitioning method(Muscarella et al., 2014; Warren & Seifert, 200Mpdels with adeltak) AlCc
value under two haveubstantial supporandak! L/ O 2F n A& AYRAOFGA @GS 2F
(Burnham & Anderson, 2004)

Another important @aluat2 y Y S G NA O LINE RdzO SR AGSK AUGKKS NBYFSSNE (G2
the operator Curve. This is based on the testing data (withheld from model construction), averaged
across alpartitioned bins (AUGs:) (Warren & Seifert, 2011 AUGestis calculated in each iteration on

the full set of background localiti€Radosavljevic & Anderson, 2014his presentthe modelQ a

ability to distinguish between conditions at occurrence and backgrounditiesahs it gives an

estimate of the probaility that a randomly chosen presence locality would be ranked above a
randomly chosen absendecality (Boria et al., 2014; Muscarella et al., 2014; Phillips & Dudik, 2008;
Phillips et al., 2004; Radosavljevic Bdarson, 2014)An AUC score @.5 or under indicatethat

the probability a randomly chosen presence is ranked above a randomlyrchaskground point is

no better than randon{Phillips & Dudik, 2008Yhe closer to 1 the AUC value is, the better the
discriminatory ability. Usually, values abov@®are considered acceptalfiéhillips & Dudik, 2008)
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The AUC value for the full modblsed ordata usedn model training is also given by ENMevaluate
(AUGain) (Warren & Seifert, 2011)

AUCdoes not allow comparisons between models with different study regions, backgrounds,
species, or test data, only betweeaimilarmodelshavingdifferent settings(such as RMs and fcs)
(Merow et al., 2013; Radosavljevic & Anderson, 20AdWCs a threshold independent sasure of
discriminatory ability but gives no indication of modekfibbo et al., 2008; Peterson et al., 2011,
Phillips et al., 2006; Phillips et al., 2004)Y Gherefore tends to favour more complex models
(Fourcade et al., 2014aRosavljevic & Anderson, 2014aWen & Seifert, 2011)herefore,it is

important to select models wittow overfitting before assessinf§uUC values.

ENMeval prduces three metrics for estimiatg overfitting. The first is given as thilean AUG £
and is the calculated difference between calibration (AddlCand evaluation (AU&) AUC scores,
averaged across all biBoria etal., 2014; Warren & Seifert, 201 Largedifference between
calibration and evaluation AU€juates to modés over fitto the training dataBoria et al., 2014)
Thisis becaus®ver fit modeldrequently perform well on cabiration data, but not on evaluation

data. If the difference is minimisedoisthe potential for overfitting(Warren &Seifert, 2011)

The other two metrics produckare thresholddependent omission rates. Omission rates are
indicative of the proportion of tedbcalities that are omitted from the model, based on the
threshold usedBoria et al., 2014)f more localities havbeen omitted than expectedhe model is
over fit(Boria et al., 2014Radosavljevic & Anderson, 2014; Shcheglovitova & Anderson,.2013)
Therefore Jower omission indicates better discrimination between suitadohel unsuitable areasnd
generallyhighermodelperformance(Boria et al., 2014)Two kinds of omission rates are presented
by ENMeval. The first is the minimum training presence threshol@-ERresented by ENB®Yal as
YtheanORNMNQ X~  &dlsith® Kareshold at the lowest value of prediction for any pixieha
calibration bcality (the training locality with the lowegtredictedvalue) and s@alculates omission
rate on all the data. Thusére isan expected omission rate of Q@oria et al., 2014)An ORre
value over zero indicates level ofoverfitting. The second is the 10% calibrationission rate
(meanORo), which setsathreshold ata value that excludes 10% thining localities with the
lowest predictions, giving an expected omission rate of QBld¥ia et al., 2014)Therdore, amean

ORpabove 0.10indicatessome level obverfitting (Pearson et al. 2007).

Base model selection

The methods generated hundreds of alternative modelseach speies. The best model for each
species was chosen based on two main points of consideration. The fist was based on the evaluation

metrics and theother was based on biological interpretation of the models. Firstly, models were
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filtered so that only those witak ! L/ O 2 F n ¢ th&endaels wveres8ddBdbased
on those with the lowest overfitting metric©Ro, ORitr, and AUGF). ORsrpwas frequently so low
in all modeldilters thus farthat had little relevance duringhodel selectionThen, only those with

the highestdiscriminatory ability (AUgs) were kept.ln order to follow a speciespecific selection
process, and becausyaluation metrics varied between species, the criteria festimodels
changedon a caséby-case basi be more orless strict Thus, the selection criteria was slightly
different for each speciess isdetailed furtherin the resultsk AI& scores and AUC scoitesd
selection criterighat wasalways the same, but the criteria for selegithose with low ovéfitting
metrics varied considerably dependion the speciesSx modelswere identified aghe relative

Wo S & G Ofor ¥azReBdied These were subject to further analysis in ordesédect a base model

to use forthe climate changévestigatiors.

Abiological interpretation approach wasibsequentlyadopted toinvestigate with models had

bestcaptured the niche ofachspedes. ThesA E Y2 RSf & 6AGK (KS woSaiQ SgI
projected onto modern climate layer® visually inspecivhichbest reflected the known current

distribution of the target species. This was checked by expert opinion where podsible

alternatively density maps created with occurrence records wesed as comparisonlsingcurrent

distributions to checkmodel predictions assunsentire distributions areknownandwas therefore

only usedas an approximateguideline.Althoughover predictionof distributionswas difficult to

dispute under predicton was generallyan obvious error and could often liaterpreted asa sign of

overfitting. Analysisof the response curvesirther informed choice of base modeModels that

showed no response to climatariables were excluded, provided the next met model was not

substartially more over fit to the training data.

This process reflects recommendations that low overfitting should be a primary criterion before
discriminatory ability is taken into accoyrand thatecological interpretatioris an important factor
to considewhen choosing modekDerville et al., 2018; Radosavljevic & Anderson, 2014;
Shcheglovitova & Anderson, 2013his allowd selection ofbasemodels thatwere not overly
complex, hadsufficient abilityto distinguish preferrd areas fromnot preferred areas, and will have

better transferability to othe time periods(Warren & Seifert, 201, Werkowskeet al., 2017.

Variable Influence

Variableinfluenceand contributionto modelswas investigatedby analysing response curves,
permutation importanceandlimiting facor plots.Response curves indicated how the model
responded to the cevariates and permutation importance indicated how mubbk varables

contributedto the models Permutation importance was used rather than percent contribution
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becausgpermutation impotance is only measured from the final model rather than the path taken
to obtain it (Phillips,2006) Permutationimportanceis calculated by easuring how much AUC
dropswhenthe model is reevaluated oreachvariable in turn, with its valuesandomly permuted
throughout the training regiomo remove the effect of angnvironmental gradienor pattern they

exhibit The moreghe AUCscoredropped the morethe variablecontributedto the model.

Limiting factorplots were constructedindependently of the models using the R pack&yeaxent
(Baumgartney 2018).These plots indicate the mobiniting factor at each grid cell.his was
calculated bygiving each variable a new value at each cell equal to that afnihen value of that
variable across the entirgainingregion.If the predicted suitabilityncrease as a result of this
valuechange, more sothan when any other variable is subject to the same treatméren that
variable wasnostly responsible falimiting suitability in that grid cellraed was thus the most limiting
factor (Elith et al., 2010Limiting factor plots were created for modechimatesandthe future
climateunder RCB8.5, to contrast the two most different climate effects on distributiofiis was

done for eachspecies.

2.6: Model Projection

After model trainingon modern climate layers to estimatke climatic niche, the selectedase

modek for eah speciesvere usedfor projections mto the four sets of future climate layers, in 2050
and 2100 These projectioa presented Probability Of Presence maps (R@QRach speciest is
implied that areas with high POP are areas with the most suitablédiabr areas where that
species will most likely be distributdxdised orthe assumptions about the moderhus ér ease of
interpretation, thephrasespotentialR A &  NJX 0 d#lieasoifuitale hapittd bisHdS
interchangeably to describe areastlwhighPOHRN this thesis

Successful estimation of the modern species distribution by the nuoled not guarante

successful projection to different climates the modelmay have poor transferabilit§Elith et al.,
2010) It is therefore important to critically evaluate ENMojections to different time periods or
geographic regiong2rojectingmodelsto different time periods with different climateselies on

goad transferability andseveralassumptionslt is assumed thatte relationship between the
species and the variablesed to train themodels does not chandgsetweentime periods

(Anderson, 2015)This is also referred to as assuming niche conservatism or no niche evolti#on.
quicker ewvironments change, thpotential for sufficient adaptatiois reduced so the validity of

this assumptiommayvary with climate scenarigHoffmann & Sgro, 2011)Vheninterpretingthe
predicteddistributions,it is further assumedhat other factorsinfluencing species distributions

includingbiotic interactionsdo not change between tim@eriods This is darder assumption to
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endorsedue to thecomplexity of thesénteractions.Additionally,it is assumed that theonstructed

future climae datasetsused to project modelare as accurate as possible.

2.6.1:Projection Evaluation

Extrapolation

Becausanodel assemblysed recentclimatic conditions to train the model when it is projed to a
different time period andthus onto differert variablesit is possible thathesevariables have values
outside of the rang®n which themodel was trained. Despite this, projection occurs as though the
basemodel is being projected onto the same climate layesed for training Therefore, MaxEnt

may predict outside of the range of values it encountered during trainiings process is called
extrapolation(Phillips et al., 2006How well itdoes thisdepends on how well the occurrence data
representedthe environmental conditions within the species preferred habitpatially and

temporally extensive occurrence records advantageous for this purpose.

By defaultMaxEnt useslamping to limit extrpolation by capping predictions to environmental
conditions with values outside of the range of those used in trainilagn@ng is done so no values
higher than the highest value and lower than the lowest value used in training remtie climate
layersthat the model is being projected oniith et al., 2011; Phillips et al., 2008)his clamps the
predicted responses to the most alike conditions in the modern climate calibration(datersam &

Raza, 201(Phillips et al., 2006)

Although this is the recommended standard practice, clamfisaf can be problemati¢Phillips et

al., 2006) For exampleclampingfixesresponse taemperatureshigher thanthose encountered in
training so that response igqual to response tthe highest training temperature, and vice versa for
lower temperaturesTherefore temperatures far out of the range of those used in model training
could are assigned the same predicted response as the most extrenpetatures used during
model training This may not be a realistic representation of species response to these
conditionsand isreferred to asi KS WLINR 6 f SY cahditions@@serice dddlainpingd S

could be identified from theovariateresponse curves.

Uncertainty

To asseswhere there were novel conditiongnd howthey influenced future climats, Multivariate
Environmental Smilarity Qurface(MESShhaps were produce(Elith et al., 2010; Radosavljevic &
Anderson, 2014)MESS mapseasure the similarity between the futuenvironment and the
training samplgElith et al., 2010and presentthis as estimatesf relative uncertainty throughout
the study region byssigning negative or gibive values Thus the similarity in climatic variables

between any given locality in the projection dataset and the localities in the training dataset was
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assesse(Elith et al., 2@0). Negative valuesdicatesites where at least one variable had a value
outside of the range encountered in the training data, thereby indicating novel conditions
(conditions not experienced during model traininGpnversely, the more positive thelue the

more similar the conditions/ere to those encountered during trainingor each species, MESS maps
for each climate scenario were produceddES&nalysisin conjunction with response curves, were
used to guide interpretations of the future climepredictionsand identify how and where novel

conditionsaffected predictiongCarneiro et al., 2016; Elith et al., 2010)

Change irlPOP calculations

Each pojectionmap presented a continuous scaleppbbability of presenc¢POR from 0-1. In

order to estimate differences between different climate scenaribgs ¢calewas split and assigned
SgSyteée Ayild2z2 yAyS RAFTFSNBY(G WoAyaQ Ay AYONBYSylGa
the proportion ofarea on each map that fell im eachbin could be calculated. The proportion of

areawithin one binwascalculatedas a proportion ofhe whole study regionThe proportion of sites

within eachbin wascalculatedfor all modern and future projections. A percentage change for all

future projections was then calculated as the change ippriion of area thafell into eachPOFbin

from the modern projection for that specieghiswas done to show the amount of habitat of

different qualities or POP rankings that was gained oritostgonse todifferent climate scenarios

All calculations were performed inRudio version 3.5.1.
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Chapter 3:Results

This chapterpresens results of the ten focal species, organised by species. It starts with the inshore
speciessnapperjohn dory, trevallyandtarakihithen continues to the deeater speciescampj

orange roughysouthern blue whitinghoki, lingandarrow squid This section duplicates anaégs

for eachspecies. An overadlummaryand a crosspecies comparison of results is described in the
final section (3.11: Resul&mmary).Full results of allEMeval runghat produced thousands of
different models fo ead species can be found indaopbox folderaccessedby following this link:

https://www.dropbox.com/sh/ébhbskzka9ebmOt/AADxJWY6BrGK2bAcuaANFI4ha?dI=0

3.1: SNAPPERJ(rysophrys auratuy

Model Selection

h¥ tf Y2RSt a 3s9afi&dNdmicBRIB.1.Qy' 18/ Y@IRISEZ® S6AGK | k! L/
selected. Train AUC scores varied from-@®8 and test AUC from 0.6D.98. To select models

with good discriminatory laility, only those >0.75 were seleaeTo select models with low

overfitting, average test ORvalues varied from 0.060.23 but only those that were <0.15 were

selected and average Ablgvaried from 0.00% 0.113 but only those <0.05 were selected. Only the
models thatmet these critera were considered for base model selection (Tablelp.When

projected as modern probability distributions, all predictions appeared relatively similar (Figure

3.1.1). When ompared to the contempony known dstribution (Figure 3.12A), models 3c10 and
3d10(Figure 3.1.0A&B)ver predictedsnapperdistribution around the top of the Sl, while models

5d11 and 5d1ZFigure 3.11E&F)appeared to under predict around the lower KIf theremaining

two, model 3e7QFigure 3.11C)showed lower overfitting valugthan all other models (QR= 0.072,
AUGe= 0.010) and was theonlymodelK & RA Ry Qi Sofhe@éhBidRrectnfitr@ndedmy:  h w
Muscarella et al. @14). Model 3e70 also had relatively good discriminatory ability with high AUC

train and test scores above 0.9. Independent expert advice suggested model 3e70 was slightly mor
representative of the contemporary distributiqt Dunn, NIWI, pers. Comniylodel 3e70 was

therefore selected from the six models as the base modesfi@ppermprojections.
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Figure 3.11: Snapper Six best Maxent models projected on modern climate lay@s$0 @), 3d10 B), 3e70
(O, 4e28 D), 5d11 B, 5d12 F). Colours reflectPOPRestimates between 4. Darker green iridates higher POP
and redthe reverse.
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Table 3.11: SnapperENMeval evaluation metrics sixbestmodels

trial

modelnum features rm

train.AUC avg.test AUCvar.test. AUC avg.diff. AUCvar.diff AUC avg.test.orMTPvar.test.orMTI avg.test.orl0pct var.test.orl0Opct delta.AlCcparameters

3c 10 LQH 1 0.834 0.822 0.019 0.035 0.01 0.002 0 0.146 0.024 0 81
3d 10 LQH 1 0.895 0.894 0.007 0.023 0.005 0.002 0 0.148 0.028 0 82
3e 70 LQH 6 0.922 0.928 0.003 0.01 0 0.002 0 0.072 0.004 0 17
4e 28 LQH 25 0.929 0.931 0.004 0.015 0.002 0 0 0.126 0.033 0 35
5d 11 LQHP 1 0.932 0.917 0.013 0.028 0.007 0.001 0 0.148 0.058 0 87
5d 12 LQHPT 1 0.932 0.917 0.013 0.028 0.007 0.001 0 0.148 0.058 0 87
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2050Model Projections

All 2050 RCR8ojections weresimilar(Figure 3.1.B-E). In the modern projectiosnhapperwere
essentially absent from the Sthulsland (Sl), expect for a small area on the N/W corner. All 2050
projections showed a moderate extension just over halfway down the West Coast of the SI, where
POP increased from <0.4 t®% in all RCPS. Around thmtire North Island (NI) the POP walso
predicted to increase substantially. In faiture climate scenarigsareas with highly preferable

climatic conditionswhichtherefore had the highest POP values, increased the most (POP >0.9 by
300.04- 412.88%)while areas with lower POP betweer60 0.9 values increased comparatively

less. Furthermore, the proportion of areas with P@iues <0.6 decreased in all RCPS (Table)3.1.2

The 2050 MESS maps for all RCPS displayed little relative uncedg@ipgn(ix D.1). Relative
certainty was highst in the RC82.6 prediction particularly around the Chatham rise, Cook Strait
and West Coast of the Sl (Figure 3A). Most relative uncertaintyvasaround the north of the Nin
RCB8.5.

2100Model Projections

The 210Qredictions showed more variatn than the 2050 predictions, although similar patier

were observed (Figure 32G-J). A similar extension down the S| West Coast and general increase in
POP around the NI was present in all 2100 RBirS$heseobservatiors were moreapparentin

scenaros thatdeviatedfurther from modern conditionsln the most'xtremescenario RC$8.5,

the probability distributiorextended to the lower Sl and to Stewart Island. Unlike the other
scenarios, the RCB% showed POP afngpperexceeding 0.5 around theottom of the SI. POP

along the east coast of the Sl was still very low, even in the more extreme scenarios. Other notable
places of predicted POP increase was the Hauraki Golf, Hawke Bay and Cook Strait/South Taranaki
bight aeas. Similarly to the 2050 ptestions in all scenarioareasof high POfhcreased the most

(POP >0.9 by 220.4897.95%), while areas with lower POP between-@.8 increased

comparatively less. Most striking was the 897.95% increase in the propartiareas with a POP of
>0.9in RCB8.5(Table 31.2). The proportion of areas with POP values <0.5 decreased in all RCPS
(Table 31.1).

The 2100 MESS maps displayed more relative uncertainty than the 2050 MES@ ppepslix DL).
Most relative uncerdinty occurred around northerNlew ZealandUncertainty was most prevalent

in the RCRS8.5prediction (Figure 3.B8B), particularly from Hawke Bay northward.
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Figue 3.1.2 SnapperRecorded roderndistribution (A) and probability distributionprojectionsfor each of the four RCP&6 B& G), 45 (C& H), 6.0(D & J),
and 8.5 (E & J) in 2050-83, modern day (F), and 2100JGColours reflectPOPestimates between 4. Darker greenndicates high POP, waited hdicates
low POP.
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Table 3.1.2 SnapperChange in POP values compared to the modern projection forafable fourclimate
scenario®2050 and 2100.

2050 2100
POP RCR.6 RCHB.5 RCB.0O RCB.5 RCR.6 RCHB.5 RCB.0O RCB.5
0.9 342.727 386.731 300.041 412.881 220.458 333.099 564.953 897.946

0.8 28.993 41423 38.059 51.283 10.789 37.736 95.196 135.596
0.7 3258 33.618 33.923 36.447 2.76 29.956 53.6 74.732
0.6 11.969 9.708 10.473 10.119 0.185 6.456 16.97 29.562
0.5 -2.819 -4.766 -2.836 -5.065 -6.049 -6.432 -4.937 5.7
0.4 -13.309 -15.049 -12.255 -15.74 -11.912 -15.568 -17.434 -7.137
0.3 -22.16  -24.026 -21.734 -25.136 -18.503 -24.314 -25.348 -9.917
0.2 -27.519 -29.088 -26.47 -29.231 -22.955 -29.141 -28.039 -9.667
0.1 -25.489 -25.807 -24.226 -24.608 -21.451 -25.768 -13.974 -1.025
Relative

Uncertainty

I‘IUU

— 50

—- -100

A B
Figure 31.3: SnapperMESS Maps of RER.62050(A) andR@S8.52100(B) MESS maps for alimate

scenarios can be found in Appen@ix. Negative sites indicate most relative uncertainty and positive
sites indicate most relative certainty.
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Variable Influence

The base model predicted thahapperwere virtually absent atlepths below-500m and had

increased POP witmean temperature (Figure 3.3.4nformation beyond 20 degrees was outside of

the range of the data so a constant value was assumed and POP was fixed at 20 degrees at about

0.75. Temperature andalinity range had very little effect, and mean saliwiity not contribute

(Figure 3.1.4Figure 3.15).

The limiting factor plots showed that the main climatic variable limiting contemp@aapper

distribution was surface temperature (ST) mean fritra mid NI southward (Figure 3.1Ap In the

RCB8.5100limiting factorplot, this substatially shifted so that ST mean wte limitingfactor in

only the most soutkeastern coastal regions of the (Gigure 3.1.B). Instead, the limiting climatic

variablethroughout most of coastallew Zealanin RCB8.5wasST range.
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Figure 31.4: SnapperPredictor response curves indicating how variables used for tra@ffagted the base
model. Model predictions (red lines) and observations (blue data fudeciles)are shown The variables are

bathymetry (A), surface salinity mean (B), surface salinity range (C), surface temperature mean (D), and surface
temperature range (E).
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Figure 31.5: SnapperPredictor variable contribution based on permutatiomportance (Phillips2006).
Variable names are shortened here to f8S = Surface salinity, ST = Surface temperature, Rng = range, Bathy =
bathymetty.
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Figure 3.1.6 SnapperLimiting actorsplots of Modern @), and RC#8.5in 2100 @) climates. Colours indicate
the most limiting variable to distribution in that area.
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3.2: JOHN DORY¥¢us fabey

Model Selection

Of all models generatedt ! L/ @I f dx®8-3305.NBYSIRE FY2 RSt a 6AGK
selected. Train AUC scores varied from 0.8®7 and test AU€ariedfrom 0.56- 0.97. To select
models with good discriminatory ability only those >0.75 were selected. To seledsnodh low
overfitting, average tesORo values varied from 0.050.27 but only those that were <0.16 were
selected and average Ablgvaried from 0- 0.135 but only those <0.05 were selecté€hly the
models that methese criteria were considered fbase model selection (Table 3.2.Al selected
models had high discriminatory ability (>0.9). When projected onto modern climate layers, four
models appeared to undenepresent contemporarjohn dorydistribution (Figure 2.1; A B, C &P,
while oneover estimated this (Figure 31D). The remaining model 4e3@igure X.1E) reflected
the modern dstribution well, and had comparatively low overfitting values, (Al 0.019, OR =

0.129). Therefore, model 4e34 was selected as the base modeitiwefpredictions.

— 04

— 02

—- 0.0

D E F

Figure 32.1: Johndory; Six best Maxent models projected on modern climate layi®S(A), 1e6(B), 2e16 (C),
3e69(D),4e34(B, %21 (F). Colours reflect probability of presence estimates betweeh.@arker green
indicates higkr POP and réthe reverse.
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Table3.2.1:John DoryENMeval evaluation metrics sfxbestmodels

trial

modelnum features rm

train.AUC avg.test AUCvar.test AUC avg.diff AUCvar.diff AUC avg.test.orMTPvar.test.orMTI avg.test.orl0pct var.test.orl0pct delta.AlICcparameters

le
le
2e
3e
4e
5e

5
6
16
69
34
21

LQHP 05
LQHPT 05

LQH
H
LQH
_l_

15
6
3
2

0.927
0.927
0.922
0.91
0.915
0.92

0.931
0.931
0.923
0.906
0.914
0.92

0.005
0.005
0.006
0.007
0.004
0.006

0.017
0.017
0.021
0.029
0.019
0.023

0.002
0.002
0.004
0.003
0.002
0.005

0.001
0.001
0.001
0.001
0.001
0.001

0

o O O O o

0.119
0.119
0.154
0.144
0.129
0.157

0.029
0.029
0.051
0.027
0.023
0.053

0

O O O O o

119
119
73
58
35
68
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2050 Model Projeiions

All 2050 RCPS projections were relatiwtyilar(Figure 3.2B-E). All 2050 projections showed
extension down the West Coast of the Sl to roughly the same degf@Bconsistentlyincreased
throughout the potentiajohn doryrange.In allclimate scenarigsareas with highly preferable
climatic conditions(and therefae had the highest POP valjemcreased the most (POP >0.9 by
302.60- 484.93%), while areas withvwer POP increaseduchless or declined. The proportion of
areas with POP values <0.7 decreased in all RCPS (Table 3.2

The 2050 MESS maps for all R@Bplayed little relative uncertaintpgpendixD.2, Figure 32.3A).

Most uncertainty was in the ntlmern regions around the NI. In the more extreme R8B3egions

with relatively high uncertainty also included the Hauraki Gulf and Hawke Bay. Athas wi

particularly high relative certainty in most RCPS 2050 MESS maps were the Chatham Rise, through
Cod Strait, to the West side of the SI.

2100 Model Projections

Results for the 210predictions were more varied thmathe 2050 predictions, although simila
patterns were observed (Figure 3.2 There was again an increase in areas with high POP and
decrease in areas witlow POP. Areas with a POP >0.9 increased by 2721/35.02% and areas
with aPOP of >0.5 decreased by 3-:3®.93%. Again, suitablerditions aroundhe NI were
maintained and PO&enerally increased in all predictions. Probable distribution extendetiér
down the West Coast of the Sl and reached Stewart Island in both@RT#6 8.5. RCP8.5also

showed a substantial increaseR®©P on the east coast of the SlI.

The 2100 MESS maps showed slightly more relative uncertainty, particularly in giext@me
scenario, RCRS5 (Figure X.3B, Appendix D.2 Most uncertainty was from the top of the NI to the
middle of the NI, incluehg Hawke Bay. Other areas with relatively high uncertainty included the bays
on either side of Banks Peninsular on thast Coast of the Sl, and around Karamea Bight at the

north of the SlI.
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Figue 32.2 John DoryRecorded raderndistribution (A) and probability distributionprojectionsfor eachof the four RCPZ;6 B& G), 45 (C& H), 6.0(D & J),
and 8.5 (E & Ji 2050 (BE), modern day (F), and 2100 JCColours reflectPOPRestimates between 4. Darker green indicates high POP, ehéd ndicates low
POP.
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Table3.2.2: Johndory; Change in POP values compared to the modern projection for &able four climate
scenario®2050 and 2100.

2050 2100
POP RCR.6 RCRB.5 RCB.0O RCB.5 RCR.6 RCB.5 RCB.O RCB.5
0.9 340.203 474.433 302.599 484.93 272.781 437.77 796.408 1126.016
0.8 58.057 57.812 21.086 61.044 25887 50.126 10245 176.681

0.7 9.997 7.095 -6.614  1.923 -3.677 2.897 15.359 46.061
0.6 -6.92 -11.133 -8.203 -15.45 -11.021 -12.177 -10.095 8.46
0.5 -15.466 -19.986 -13.028 -23.344 -15.997 -19.934 -22.17 -3.343
0.4 -21.867 -26.967 -18.859 -29.815 -20.463 -26.297 -29.501 -9.199
0.3 -26.932 -31.388 -23.849 -34.545 -24.804 -30.7 -34.178 -12.853
0.2 -29.288 -33.296 -25.618 -35.869 -26.457 -32.388 -35.04 -15.585
0.1 -28.527 -32.571 -24.374 -34.452 -26.009 -31.465 -27.377 -15.599
Relative

Uncertainty

I‘IUU

— 50

- 100

A B
Figure3.2.3: Johndory; MESS Maps of REP.62050(A) andRCB8.52100(B) MESS maps for all climate

scenarios can be found in Appendix DNEgative sites indicate most relative uncertainty and positive
sites indicate rost relative certainty.
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Variable Influence

The base model predictgdhn dorywere absent below500m and had increased POP with mean
temperature (Figure 3.4). Information beyond 19 degrees was outside of the range of data used to
train the model sa constant value was assumed and POP was fixed at 19 degrees at about 0.95. ST
mean contributed most to thenodel, other climatic variables had comparatively little contribution
(Figure 3.4 and 3.5).

The modern liming factor plot (Figure 3) showed $ mean was main the limiting climatic variable
for contemporaryjohn dorydistribution, particularly in regiassouth of the mid NI. In the future

limiting factor plot the area limited by ST mean was substantially reduced and confined to the lower
easternSl regions (Figure@B). Instead, the limiting climatic variable in regions north of the mid Sl

and the majoity of the future limiting factor plot was ST range.
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Figure3.2.4: Johndory; Predictor response curves indicating how variables used faritrgaffected the base
model. Model predictions (red lines) and observations (btiz¢a rug of decilesire shownThe variables are

bathymetry (A), surface salinity mean (B), surface salinity range (C), surface temperature mean (D), and surface
temperature range (E).
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Figure3.2.5: Johndory; Predictor variable contribution based onnpeutation importance (Phillips, 2006).
Variable names are shortened here to f8S = Surface salinity, ST = Surface temperature, Rng = range, Bathy =
bathymetty.
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Figure3.2.6: Johndory; Limiting Bctorsplots of Modern (&), and RC®3.5in 2100 @) climates Colours
indicate the most limiting variable to distribution in that area.
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3.3: TREVALL{Pseudocarangeorgianug

Model Selection

Models selected are showny (I 6t S odMd Kk !-mny@RIPHEZS 2 yPRNINER ST ANJ

of O were selected. Train AUC scores varied from 00698 and test AUC from 0.6D.98. To select
models with good discriminatory ability only those >0.75 were selected. Ta setetels with low
overfitting average tesDRy values varied from 0.0360.19 but only those that were <0.11 were
selected and AUgrvaried from 0.00% 0.079 butonly those <0.05 were selecte@hen projected,
the selected models each matched the cemiporary distribution relatively well (Rige 33.1)
although, models 2d16 (Figure33lB), and 5d10 (Figure 31E) underestimatel distribution in the
southern NI analightlyoverestimateal around the Hauraki Gulf. Unfortunately, these two models
were theonly oneswhereclimatic variables had gninfluence.Selecting modela/here an
environmentalresponse was detected rather than those where it was not (nete28, 2e27, 4e2,
5e27) did not require a substantial tradaff in model qualityas allsix seleted best modelsigh
discriminatory abiliy (AUGranand AUGesboth >0.9) and low overfitting, with QiRvalues (OR =
0.076- 0.107)barelyexceeding the 1% OR, threshold recommended biluscarella et al. (2014)
(Table 3.3.1)Model 2d16 had slightly lower overfitting metrics (A= 0.012, OR= 0.09)Table
3.3.1) Model 2d16 was theffere selected as the base model.
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Figure 33.1: Trevally Six best Maxent models projected on modern climate lay28(A), 2d16(B), 2e27
(O, 4e2(D), 5d10 (B, 527 (F). Golours reflect probability of presence estimates betweeh.®arker green
indicates highePOP and red the reverse.
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