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Abstract 

The long-term sustainability and security of food sources for an increasing human population will 

become more challenging as climate change alters growing and harvesting conditions. Significant 

infrastructure changes could be required to continue to supply food from traditional sources. 

Fisheries remains the only major protein supply directly harvested from the wild. This likely makes it 

the most sensitive primary sector to climate change. Overfishing is an additional concern for 

harvested species. There is a need to anticipate how marine species may respond to climate change 

to help inform how management might best be prepared for shifting distributions and productivity 

levels. The most common response of mobile marine species to changes in climate is an alteration of 

ǘƘŜƛǊ ƎŜƻƎǊŀǇƘƛŎ ŘƛǎǘǊƛōǳǘƛƻƴǎ ŀƴŘκƻǊ ǊŀƴƎŜ ǎƘƛŦǘǎΦ tǊŜŘƛŎǘƛƴƎ ŎƘŀƴƎŜǎ ǘƻ ŀ ǎǇŜŎƛŜǎΩ ǊŀƴƎŜ ŎƻǳƭŘ 

promote a timely development of more sustainable harvest strategies. Additionally, these 

predictions could reduce potential conflict when different management areas experience increasing 

or decreasing catches. Ecological Niche Modelling (ENM) is a helpful approach for predicting the 

response of key fishery species to climate change scenarios. 

The overall aim of this research was to use the maximum entropy method, Maxent, to perform ENM 

on 10 commercially important fishery species, managed under the Quota management system in 

Aotearoa (New Zealand). Occurrence data from trawl surveys was used along with climate layers 

from Bio-ORACLE to estimate the species niche and then predict distributions in four different future 

climate scenarios, called Representative Concentration Pathway Scenarios (RCPS), in both 2050 and 

2100. With little consensus over the best settings and way to apply the Maxent method, hundreds of 

variations were tried for each species, and the best model chosen from trial experimentation.  

In general, Maxent performed well, with evaluation metrics for best models showing little omission 

error and good discriminatory ability. There was, however, considerable variation between the 

different species responses to the future climate scenarios. Consistent with other studies, species 

able to tolerate sub-tropical or temperate conditions tended to expand southward, while sub-

antarctic species generally contracted within their preferred environment. The increasing emissions 

ƻǊ ΨōǳǎƛƴŜǎǎ ŀǎ ǳǎǳŀƭΩ ŎƭƛƳŀǘŜ ŎƘŀƴƎŜ ǎŎŜƴŀǊƛƻ ŎƻƴǎƛǎǘŜƴǘƭȅ ǇǊŜǎŜƴǘŜŘ ǘƘŜ Ƴƻǎǘ ŜȄǘǊŜƳŜ ŘƛŦŦŜǊŜƴŎŜ 

from modern predictions. Northern regions of prediction, where sub-tropical or temperate species 

increased in probability of presence, were often highly uncertain due to novel conditions in future 

environments. Southern regions were usually less uncertain. Surface temperature consistently 

influenced base models more so than any other covariates considered, with the exception of 

bathymetry.  
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Some predictions showed common areas of relative stability, such as hoki and ling on the southern 

Chatham Rise, potentially indicating future refugia. The preservation of habitats in the putative 

refugia may be important for long-term fisheries resilience. Furthermore, most species that showed 

large predicted declines are currently heavily harvested and managed. Overfishing could compound 

the effects of climate change and put these fisheries at serious risk of collapse. Identification of 

potential refugial areas could aid strategy adjustments to fishing practise to help preserve stock 

viability. Additionally, when some species shift, there are areas where new fisheries may emerge. 

This study offers a perspective of what future distributions could be like under different climate 

ǎŎŜƴŀǊƛƻǎΦ ¢ƘŜ 9ba ǇǊŜŘƛŎǘǎ ǘƘŀǘ ǘƘŜ ΨōǳǎƛƴŜǎǎ ŀǎ ǳǎǳŀƭΩ ǎŎŜƴŀǊƛƻΣ ǿƘŜǊŜ ΨƎǊŜŜƴƘƻǳǎŜ ƎŀǎΩ ŜƳƛǎǎƛƻƴǎ 

continue to rise throughout the century, will have a negative impact on multiple aspects of 

distribution. However, in a reduced emissions scenario, less extreme range shifts are predicted. This 

study has provided a predictive approach to how fisheries in Aotearoa might change. The next step is 

to determine whether there is any evidence for the beginning of these changes and to consider how 

fisheries might best adapt.  
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Chapter 1: Introduction 

1.1: Climate Change Impacts on the Marine Environment 

Anthropogenic climate change has become the forefront of most research globally, is topical in 

mainstream media, and is the source of much political debate. Anticipating changes in global climate 

and impacts may better enable society to prepare and understand what will be required to adapt. 

Discussions of climate change impacts have been disproportionately focussed on terrestrial 

ecosystems and species, while impacts on the marine environment has often been under-reported 

(Turra et al., 2016; Donelson et al., 2019; Frost et al., 2017; Robinson et al., 2011). Recently however, 

concerns have been raised in mainstream media reports about the effects of global climate change 

on marine environments (Beck, 2018; May, 2019; Neilson, 2019; Stevens & Noll, 2019) and a 2019 

study by Cheng et al. (2019) suggested that the marine environment is being impacted to a larger 

extent than was previously expected. Impacts on the marine environment include, but are not 

limited to, rapid ocean warming, rising sea levels, ocean acidification, declining oxygen levels, and 

primary productivity shifts (Cheng et al., 2019; Free et al., 2019, Law et al., 2017). There is an urgent 

need to understand the implications of these changes on marine species ecosystems, especially 

those that support valuable fisheries.  

Species that cannot tolerate changes to their environmental conditions usually respond by shifting 

their geographic range, including withdrawal to areas of refugia, and/or adapt to the altered 

conditions (Donelson et al., 2019; Nogués-Bravo et al., 2018). In the absence of these types of 

responses, extirpation or extinction of species or populations may occur (Nogués-Bravo et al., 2018). 

Phenotypic plasticity or altering phenology may permit species to temporarily persist in an area and 

avoid moving or adapting (Crozier & Hutchings, 2014). However, persistence through extreme 

environmental change will likely require more permanent adjustment and/or  a combination of these 

responses (Crozier & Hutchings, 2014; Donelson et al., 2019). The current rate of the changing 

climate is not conducive to adaption unless rapid, a possibility reserved for species with high 

reproductive rates and short generation times ƻǊ ΨǊ-seleŎǘŜŘΩ ƭƛŦŜ ƘƛǎǘƻǊƛŜǎ (Colautti & Barrett, 2013; 

Crozier & Hutchings, 2014; Reznick & Ghalambor, 2001). This, and the mobile nature of most marine 

organisms, often undertaking long distance migrations or being dispersed by pelagic larvae in ocean 

currents, suggests distribution shifts will more frequently be observed as responses of marine 

species to climate change (Donelson et al., 2019; Hiddink & Ter Hofstede, 2008).  

Many marine speciesΩ distributions are dynamic and strongly linked to temperature preferences 

(Cheung et al., 2012; Sunday et al., 2012). Although ocean warming will have varied effects on 

different marine taxa (Free et al., 2019), latitudinal and depth range shifts in response to ocean 



11 

 

warming have already been observed numerous times (Cheung et al., 2012; Dambach & Rödder, 

2011; Jung et al., 2014; Morley et al., 2018; Perry et al., 2005). Mostly poleward shifts have been 

observed and are expected to increase, with species in sup-polar regions at high risk of extinction 

due to invasion and competition from species currently in temperate and tropical regions (Cheung et 

al., 2009; Cheung et al., 2013; Morley et al., 2018). In this case, this pattern would result in an 

increasing dominance of warm water species, a phenomenon called άtropicalisationέ (Cheung et al., 

2012; Cheung et al., 2013). These large scale redistributions are likely in response to physiological 

stress or change in food availability due to higher temperatures (Plagányi, 2019). Other factors 

associated with ocean warming, such as ocean acidification and reduced oxygen concentration, are 

expected to compound warming effects (Hofmann & Schellnhuber, 2009). The resulting changes in 

species composition and richness will likely substantially impact fisheries worldwide (Cheung et al., 

2009; Dambach & Rödder, 2011). As species shift across current management boundaries, conflicts 

and management disputes may arise over catch allocations (Bell et al., 2014; Miller & Munro, 2004). 

Furthermore overfishing of shifted populations would further compromise the resilience of species 

already contracting in response to warmer temperatures (Free et al., 2019).  

Global productivity of marine fishes has declined and is expected to continue to do so as a result of 

climate change and other anthropogenic factors (Free et al., 2019). However, changes in productivity 

are expected to vary in different regions (Blanchard et al., 2012; Cheung et al., 2016; Moore et al., 

2018). Decline of fisheries productivity coinciding with human population increases will almost 

certainly reduce per-person seafood availability (Plagányi, 2019). In future, suitable responses to 

redistribution of fisheries worldwide could alleviate some pressure on fisheries. Implementation of 

effective management strategies and adaptation requires better understanding of fƛǎƘŜǊƛŜǎΩ 

responses to climate change (Cheung et al., 2013). Anticipating redistribution of key fishery species 

is a first step in achieving this. Tools such as Ecological niche modelling (ENM) may allow better 

anticipation of species shifts in response to climate change. ENM has the potential to aid 

development of sustainable management practices in response to changing climates.  

ENM or Species Distribution Modelling (SDM)* allows exploration of possible range shifts and 

species overlaps by predicting speciesΩ distributions based on correlations between environmental 

covariates and speciesΩ occurrences. ENM has also been used to aid species delimitation (Raxworthy 

et al., 2007), invasive species studies (Thuiller et al., 2005), conservation planning (Lindsay et al., 

2016; Moore et al., 2016), phylogenetics (Graham et al., 2004) and population genetics studies 

(Mestre et al., 2015; McCallum et al., 2014). See Graham et al. (2006) and Martinez-Meyer et al. 

(2004) for other purposes. Increased use of ENM to predict speciesΩ responses to future 

environments has coincided with increased data accessibility, technological advancements and rising 
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concerns about climate change. Unfortunately, far fewer marine ENM studies have been done than 

terrestrial studies (Robinson et al., 2011), and in 2017 only 17% of these had been done specifically 

as climate change investigations (Robinson et al., 2017). ENM as a tool to predict responses to 

climate change in the marine realm is an underutilised resource.  

Lack of marine ENM studies could be attributed to the difficulty in collecting occurrence data 

compared to terrestrial environments (Kaschner et al., 2006; Mannocci et al., 2018; Tyberghein et 

al., 2012). Challenges in the marine environment that restrict collection, such as clarity and depth, 

have resulted in marine surveys historically falling behind the terrestrial ones (Costello et al., 2010; 

Zhang & Vincent, 2017). Most marine ENM studies have been performed in temperate northern 

regions, particularly the Northern Atlantic where survey effort is substantial (Breece et al., 2016; 

Bruge et al. 2016;  Robinson et al., 2017). There has been a lack of ENM studies in other regions with 

high survey effort for fisheries monitoring, such as South Africa and parts of South America 

(Robinson et al., 2017). Additionally, in regions likely to be substantially affected by potential 

poleward shifts, such as tropical waters around Indonesia and Africa, ENM has rarely been utilised 

(Barros et al., 2014). This is likely due to wealth and institute density as well as lower survey effort. 

Furthermore, few marine ENM have been done specific to the Arctic, despite predicted substantial 

community composition changes species (Cheung et al., 2009; Cheung et al., 2013; Morley et al., 

2018). In 2017 only 10% of all marine ENM studies had been in Australasia and only 4 out of 236 

marine ENM studies done worldwide were specific to New Zealand. None of the New Zealand 

studies were investigations into climate change responses (Robinson et al., 2017).  

Further reservations to apply ENM to marine environments may be due to lack of fossil records or 

genetic data from the marine environment, which are often used in terrestrial studies to corroborate 

predictions (Gavin et al., 2014). However, marine environments are more mobile than the terrestrial, 

from tides to ocean currents, and therefore supports greater potential for long distance dispersal 

(Carr et al., 2003; L. Robinson et al., 2011). Most marine organisms generally disperse farther and 

faster than terrestrial species and are more likely to occupy a greater amount of the area available 

with suitable habitat (Donelson et al., 2019; L. Robinson et al., 2011). As a result, ENM may be 

expected to predict marine speciesΩ future distributions better than those of terrestrial organisms. 

Additionally, marine environmental data and can ōŜ ƻōǘŀƛƴŜŘ ŦǊƻƳ ōǊƻŀŘπǎŎŀƭŜ ǊŜƳƻǘŜƭȅ ǎŜƴǎŜŘ ƻǊ 

modelled data sources, a benefit not as applicable for terrestrial studies, which are required 

frequently to include microclimate information (Robinson et al., 2011).  

_________________________________________________________________________________ 
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*The terms ENM and SDM model are often used interchangeably. What the distinction is and whether it is 

important appears an unresolved topic of debate (Peterson 2006; Peterson 2012; Elith & Leathwick 2009; 

Franklin 2010; Sillero 2011; Araújo & Peterson 2012; Warren 2012). Although the aim of this study is not to 

characterise the ecological niche but to estimate the potential distributions, doing so requires niche estimates 

based on a set of variables (Peterson, 2012). Furthermore, interpreting how environmental changes may elicit a 

speciesΩ response and influence distributions relies on niche theory because it assumes a correlation between 

the variables used and speciesΩ potential geographic distributions (Peterson, 2012, Wiens et al., 2009). Thus, 

the phrase ENM is used rather than SDM in this thesis.  

__________________________________________________________________________________ 

1.2: ENM Algorithms 

A wide variety of ENM algorithms are now available and easily accessible. These include algorithms 

that use Presence Absence (PA) data such as generalised linear models (Nelder & Wedderburn, 

1972; Zuur et al., 2010), generalised additive models (Zuur et al., 2010) and artificial neural networks 

ό5ΩƘŜȅƎŜǊŜ et al., 2006; Fukuda et al., 2013). Others are able to utilise Presence Only (PO) data such 

as BIOCLIM (Booth 1985; Booth et al., 2014; Parra et al., 2004), DOMAIN (Carpenter et al., 1993; 

Segurado & Araujo, 2004), Maxent (Phillips et al., 2006; Phillips et al., 2004), and GARP (Anderson, 

2003; Peterson, 2001). PA data contains both species presence and absence information and is 

usually collected in a systematic and targeted manner. PO data does not contain absence 

information and is usually more inconsistent and spatially biased than PA data. PO data however is 

more easily collected and is readily available from museums, herbariums, and online sources like the 

Global Biodiversity Information Facility (GBIF; http://www.gbif.org) dataset (Elith et al., 2006). 

Algorithms that utilise PO data are therefore more easily utilised and PO data is a valuable resource, 

given the challenges of using it are overcome (Elith et al., 2006).  

In 2017, the most used ENM software was Maxent, the popularity of which has substantially 

increased since its introduction in 2006 (Gobeyn et al., 2019; Morales et al., 2017; Phillips et al., 

2006). Maxent is a maximum entropy based machine learning algorithm that uses presence and 

background data to predict the probability distribution of a species based on a given set of 

environmental variables (Manzoor et al., 2018). Although less mature, Maxent has often performed 

well compared with other ENM methods (Derville et al., 2018; Elith & Graham, 2009; Elith et al., 

2006; Phillips et al., 2006; Ray et al., 2018; Shabani et al., 2016; Tarkesh & Jetschke, 2012) 

particularly on small sample sizes όtŀǇŜǒ ϧ DŀǳōŜǊǘΣ нллтΤ tŜŀǊǎƻƴ et al., 2007). However, there has 

been particular contention around whether Maxent or GARP (Genetic Algorithm for Rule-set 

Prediction) is superior (Chikerema et al., 2017; Peterson et al., 2007; Ray et al., 2018; Terribile & 

Diniz-Filho, 2010). Most studies seem to favour Maxent and claim it achieves better predictions 

http://www.gbif.org/
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(Elith & Graham, 2009; Phillips et al., 2006; Ray et al., 2018; Tarkesh & Jetschke, 2012). Those that 

favour GARP either only use AUC statistics to evaluate models (Terribile & Diniz-Filho, 2010), an 

evaluation metric that has been criticised when used exclusively (Lobo et al., 2008; Peterson et al., 

2008), or received criticism for incorrect use of the Maxent (Peterson et al., 2007; Phillips, 2008). 

This was usually related to background data use, insufficient replicates or failing to utilise the 

flexibility of Maxent by relying on default settings (Anderson, 2015; Anderson & Gonzalez, 2011; 

Peterson et al., 2007; Phillips, 2008). Studies favouring Maxent often explored more settings and 

features of the software (Elith & Graham, 2009). Without considering key settings that can be 

altered to suit the data, the utility of Maxent is often underestimated (Anderson & Gonzalez, 2011; 

Chikerema et al., 2017). Furthermore, ENM studies in general rarely attempt to estimate uncertainty 

in their predictions, reducing the ability to identify methods or models that produce more or less 

robust predictions (Cheung et al., 2016; Morley et al., 2018; Planque et al., 2011). 

1.3: Target Species 

This thesis considers a range of species managed under the New Zealand Quota Management 

System (QMS), in New Zealand (New Zealand) for which their occurrence records are regularly 

collected during fisheries research trawl surveys by the National Institute of Water and Atmosphere 

Research Ltd. (NIWA). These species were chosen due to their prevalence in literature, varied life 

histories and other biological traits, and diverse temperature and depth preferences, so as to have a 

range of species to compare and contrast. Target species include inshore species; snapper, john 

dory, trevally and tarakihi usually found at depths of less than 200m, and a number of deep-water 

species such as scampi, orange roughy, hoki, ling, southern blue whiting, and a species of New 

Zealand arrow squid. Each of these species are recognised as important fisheries in New Zealand and 

many have recreational and/or cultural value (Fisheries New Zealand, 2018). Species are listed with 

their most commonly used name, aņƻǊƛ and scientific names respectively. Where the common and 

aņƻǊƛ names were the same only this was used. 

Snapper or tņƳǳǊŜ (Chrysophrys auratus Forster, 1801) 

Snapper are in the Sparidae family, made up of 38 Genera, and 159 species, distributed throughout 

tropical and temperate Atlantic, Indian, and Pacific Oceans (Paul, 1986). Snapper are one of the most 

commercially valuable inshore species in New Zealand, distributed mainly from the top of NI to top 

of SI (Parsons et al., 2014). Snapper are mostly prevalent in warm waters, and appear to have 

increased growth, survival and recruitment success in warmer waters (Fielder et al., 2005; Francis, 

1993; Parsons et al., 2014). The same species is also found around coastal Australia and some Pacific 

Islands (Ashton et al., 2019; Sumpton et al., 2008). They are demersal fish with a depth range down 
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to 200m but are typically present in 15-60 m (Parsons et al., 2014; Smith et al., 1978). Snapper are 

relatively slow growing and long lived, reaching maturity at around 3-4 years and may live for up to 

60 years (Parsons et al., 2014).  

Hoki (Macruronus novaezelandiae Hector, 1871) 

Hoki are in the Merlucciidae family, made up of 24 species and 5 Genera, distributed throughout the 

Atlantic, eastern Pacific, Tasmania and New Zealand, often in sub-antarctic waters (Alyling & Cox, 

1982). As an abundant commercial finfish species in New Zealand waters, hoki ƛǎ bŜǿ ½ŜŀƭŀƴŘΩǎ 

largest fishery and is exported all over the world (Dunford et al., 2015; McKenzie, 2017). Hoki are 

widely distributed throughout New Zealand Exclusive Economic Zone at depths from 50 - 1000m, 

although they are typically caught between 400-600m in southern regions, preferring cooler water 

temperatures (Hamer et al., 2012). Hoki are relatively fast-growing, reaching maturity at 3-5 years 

and living for up to 25 years (McKenzie, 2017). 

Orange roughy or nihorota (Hoplostethus atlanticus Collett, 1889) 

Orange roughy are part of the Trachichthyidae family, consisting of 49 species and 8 genera 

distributed in temperate oceans worldwide (Tingley & Dunn, 2018). Orange roughy are widely 

distributed globally but absent from northern Indian and Pacific Oceans (Branch, 2001; Kulka et al.,  

2003; Laptikhovsky, 2008; Roberts et al., 2015; Varela et al., 2013). In New Zealand they are 

widespread from depths of 450-1800m, although usually caught between 700-1300m (Branch, 

2001). Orange roughy are slow growing and exceptionally long lived, known to live well over 100 

years (Andrews & Tracey, 2003; Andrews et al., 2009; Tingley & Dunn, 2018). Orange roughy ŘƻƴΩǘ 

tend to reach maturity until 30-40 years, and have low fecundity (Branch, 2001; Tingley & Dunn, 

2018). 

Tarakihi (Nemadactylus macropterus Forster, 1801) 

Tarakihi are part of the Cheilodactylidae family, with 27 species and 4 genera, distributed in 

subtropical and temperate waters both northern and southern hemispheres (Roberts et al., 2015). 

Tarakihi are widespread and commercially important marine fish in New Zealand and southern 

Australia (Burridge & Smolenski, 2003). They are typically found on the continental shelf at depths of 

80-100m but known depth range is from 10 up to 500m (Beentjes, 2011; Burridge & Smolenski, 

2003; McKenzie et al., 2017). Tarakihi have high fecundity, are relatively fast-growing, mature at 4-6 

years and live upwards of 35 years (Burridge & Smolenski, 2003; McKenzie et al., 2017).  

Trevally or araara (Pseudocaranx georgianus Cuvier, 1833) 
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Trevally are part of the Carangidae family, with 146 species and 30 genera, distributed in tropical 

waters in the Atlantic, Indian, and Pacific oceans (Roberts et al., 2015). Trevally are one of New 

½ŜŀƭŀƴŘΩǎ Ƴƻǎǘ ƛƳǇƻǊǘŀƴǘ ŎƻƳƳŜǊŎƛŀƭ ƛƴǎƘƻǊŜ ŦƛǎƘ ǎǇŜŎƛŜǎ (Fisheries New Zealand, 2018). Found in 

northern New Zealand and other areas throughout the world, although there is much confusion and 

inconsistency where naming of this species is concerned throughout the world (Fisheries New 

Zealand, 2018). Trevally are most common at depths of approximately 80m, although their depth 

range is thought to be 10 - 238 m (Mundy, 2005). Trevally can reach over 40 years of age (Fisheries 

New Zealand, 2018).  

Scampi ƻǊ ƪǁǳǊŀǊŀƴƎƛ (Metanephrops challenger Balss, 1914) 

Scapi are part of the Nephropidae family, with 18 genera and 118 species distributed throughout 

both southern and northern hemispheres (Bell et al., 2013; Tshudy, 2003). In New Zealand, scampi 

are of high value, particularly as an exported species (Tuck et al., 2015; Van der Reis et al., 2018). 

They are generally found at depths of 200-600m on muddy areas of the continental slope around 

eastern and western New Zealand, including the Chatham Islands (Bell et al., 2013; Major & Jeffs, 

2018; Tshudy, 2003; Tuck et al., 2015). Scampi can live for up to 15 years, reaching maturity at 3-4 

years (Cryer & Oliver, 2001), and are known to have low fecundity (Phillips, 2008).  

John dory or kuparu (Zeus faber Linnaeus, 1758) 

John dory are part of the Zeidae family, with 6 species and 2 genera, distributed in the Atlantic, 

Indian, and Pacific Oceans (Heemstra, 1980). John dory is distributed widely worldwide, usually 

found less than 200 m deep (Maravelias et al., 2007; Radford et al., 2018). In New Zealand they are 

distributed mainly around the NI and northern SI (Dunn & Jones, 2013). John dory have been found 

to live up to eight years, in New Zealand (Caton & McLoughlin, 2000) and mature at 4-5 years (Ismen 

et al., 2013).  

Southern blue whiting (Micromesistius australis Norman, 1937) 

Southern blue whiting are in the family Gadidae, which has 23 species and 13 genera distributed in 

sub-antarctic water in the Arctic, Atlantic and Pacific oceans at depths of 0-800m (Alyling & Cox, 

1982). Southern blue whiting occur in sub-antarctic waters off South America and southeast of New 

Zealand (Hanchet, 1999; O'Driscoll et al., 2016). New Zealand southern blue whiting are a major 

fishery with substantial annual landings (Fisheries New Zealand, 2018; O'Driscoll et al., 2016). 

Southern blue whiting are known to aggregate at 200-500m (O'Driscoll et al., 2016). They usually live 

to around 15 years but have been found to live up to 25, and mature between 2-4 years (Fisheries 

New Zealand, 2018).  
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Ling or hokarari (Genypterus blacodes Forster, 1801) 

Ling are part of the family Ophidiidae, with 258 species and 50 genera, found in the Atlantic, Indian 

and Pacific oceans (Roberts, 2015). Ling are found in depths of 100-800m in the southern Pacific and 

Atlantic oceans (Dunn et al., 2010). The maximum recorded age for ling in New Zealand is 46 

ŀƭǘƘƻǳƎƘ ǘƘŜȅ ŘƻƴΩǘ ƻŦǘŜƴ ƭƛǾŜ ƻǾŜǊ ол ȅŜŀǊǎ (Dunn et al., 2010; Horn, 2005) and have relatively low 

fecundity compared to other deep water species (Paredes & Bravo, 2005). Hoki, arrow squid and 

scampi are common components of their diet in New Zealand (Fisheries New Zealand, 2018). 

New Zealand arrow squid or wheketere (Nototodarus sloanii Gray, 1849) 

Arrow squid are part of the family Ommastrephidae, with 11 Genera and 21 species, found in all 

oceans of the world (Jereb & Roper, 2005; Roper et al., 2010). N. sloani is endemic to New Zealand 

and found south of the convergence zone up to 600m depth (Fisheries New Zealand, 2018). 

Juveniles are found in shallower waters of <200m (Dunn, 2009). They live to around 1 year, have 

rapid growth and mature around 200 days (Dunn, 2009). There is a second closely related species, N. 

gouldi, which closely resembles N.solani, making it difficult to differentiate (Fisheries New Zealand, 

2018). N. gouldi is generally found further north and on the west coast (Fisheries New Zealand, 

2018). Although only N. sloanii was modelled in this thesis, discussion of how mistaken identification 

between these two species may have affected results has been included.  

1.4: Thesis Objectives 

The overall objective of this study is to establish a better understanding of how some New Zealand 

marine species included in the New Zealand Quota Management System (QMS) may respond to 

future climate change.  The specific aims of this thesis were as follows: 

¶ To appropriately collate and examine marine climate and fish occurrence data for use with 

the Maxent modelling method.  

¶ To perform ENM on each target species under different parameters in order to find a model 

that best represented the ecological niche of the target species. 

¶ To project best models for each species onto four different future climate scenarios 

(Representative Concentration Pathway Scenarios) in order to visualise their response. 

¶ To consider the validity and reliability of the future predictions. 
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Chapter 2: Methods 

2.1: Workflow overview: 

 

 

 Figure 2.1: Overview of the methods 

 

2.2: Occurrence Data 

2.2.1: Preparing Occurrence Data 

Occurrence data for New Zealand marine fishery species were obtained from the fisheries New 

Zealand database, which holds operational details, catch, and biological sampling data for all 

government-commissioned, research trawl surveys. Summary of the major survey series within this 

dataset can be found in Beentjes and Stevenson (2008); Dunn, Rickard, Sutton, and Doonan (2009); 
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Stevenson and MacGibbon (2018). These data were provided by NIWA (M. Dunn). The total 

geographical coverage of this dataset is presented in Figure 2.2. This dataset contained 660,905 

catch records of 1,892 different marine species caught between 1960 and 2017, although most were 

caught after 1980 (Figure 2.3, Appendix A.1). Depth of records ranged from 2m to 2730m (Figure 

2.4). Any record with an assigned depth that when plotted with depth contours appeared to be an 

error, was removed. Full summary information of these occurrence records can be found in 

Appendix A.2.  

Using R Studio version 3.5.1, occurrence records were filtered and only those collected from bottom 

trawls and high opening bottom trawls were kept, so that 579,435 records remained. Records where 

other gear methods were used were excluded. Only records with excellent or satisfactory gear 

performance, as per the trawl database documentation by Mackay (2011), were kept so that 
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545,077 remained. Records with NA or zeros as coordinates were also removed so that the final total 

number of records in the entire dataset was 543,909. This filtering was done for consistency of 

geographic comparisons and to retain only high-quality data. The dataset was then subset by species 

into separate files for each of the ten target species. The files were then reduced to only the 

coordinate information for each species, in order to produce the necessary input files for the 

MAXENT modelling software (Phillips et al., 2004). A summary of the number of occurrence records 

for each species, before further processing is provided in Table 2.1. 

  

Figure 2.2: Total geographic coverage of occurrence of species records in the New Zealand region 
from the MPI trawl dataset (provided by NIWA, M. Dunn). 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3: Total number of occurrence records (y axis) collected per year (x axis) from the New 
Zealand region from the MPI trawl dataset (provided by NIWA, M. Dunn). 
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Figure 2.4: Maximum depth of records (A) and minimum depth of records (B) in New Zealand, with 
depth (x axis) and frequency of occurrence (y axis), of records in the total occurrence dataset 
provided by NIWA (M. Dunn). 

 

 

2.2.2: Spatial Bias in the Occurrence Data 

Assumptions about occurrence data 

A key assumption in ENM is that occurrence data points are spatially independent from each other. 

The presence of sampling bias violates this assumption (Boria et al., 2014; Carsten et al., 2007). 

Unstructured sampling effort and recurrent sampling of more accessible areas are common in PO 

A 
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datasets and result in biased data (Fithian et al., 2015; Fourcade et al., 2014). In the marine 

environment, sample bias may arise due to higher levels of sampling inland, as it is more easily 

accessible, or because of management priorities. Locations distant from land may be less often 

sampled for practical reasons (Corkeron et al., 2011; Derville et al., 2018). Furthermore areas where 

important commercial species do not commonly occur are likely to be rarely sampled. Sampling bias 

promotes environmental bias by over-representing environmental conditions associated with 

regions (or time periods) that encompass clustered records (!ƛŜƭƭƻπ[ŀƳƳŜƴǎ at al., 2015b; Boria et 

al., 2014; R. J. Hijmans et al., 2000; Kadmon et al., 2004; Reddy & Dávalos, 2003). In ENM this creates 

models over-fit to environmental conditions associated with clustered records and leads to 

erroneous estimates of both optimum conditions and variable response and influence (Boria et al., 

2014). Temporal bias may also be introduced if surveys are consistently always done at similar times, 

ŦƻǊ ŜȄŀƳǇƭŜ ƻƴƭȅ ŘǳǊƛƴƎ ŎŜǊǘŀƛƴ ǎŜŀǎƻƴǎ ƻǊ ƛƴ ΨƎƻƻŘΩ ǿŜŀǘƘŜǊ (Corkeron et al., 2011; Derville et al., 

2018; Elith et al., 2011). On further inspection, these data appeared to be relatively consistent with 

year-round sampling (Appendix 2.3). 

 

Similarly, it is assumed in ENM that the sampled area reflects the entire range of conditions the 

target species can tolerate (Anderson, 2015). If sampling bias results in omission of large areas of a 

speciesΩ range this assumption is unreasonable as these areas will be mistaken for regions that 

ŀǊŜƴΩǘ ƛƴƘŀōƛǘŜŘ due unfavourable conditions. This often produces overly conservative estimates of 

suitable habitat, due to a narrower range of environmental conditions being associated with 

occurrence records (also known as overfitting) (Radosavljevic & Anderson, 2014). The following 

sections explain how sampling bias was addressed this study, so that these assumptions were more 

acceptable. However, assuming the full range of areas with tolerable conditions are occupied may 

also be unrealistic if dispersal barriers have prevented occupation of suitable areas. This study 

assumed few or no dispersal barriers currently operating in the marine environment (that are not 

included in the investigated variable set) substantial enough to have majorly restricted any of the 

target speciesΩ ability to inhabit its full range of tolerable environment. Therefore, once accounting 

for spatial bias had been attempted, it was assumed that the occurrence dataset represented 

spatially independent geographic localities associated with the full range of environmental 

conditions tolerable for each species.  

 

It is further assumed that within the species range niche characteristics are similar, so that 

environmental conditions associated with occurrences are within the same tolerance range. If 

species are genetically isolated or have begun to isolate and adapt to different conditions this may 

be an issue. An ideal species for ENM is one with panmixia throughout its range (Radosavljevic & 
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Anderson, 2014). The ability of the occurrence data to accurately represent the environmental niche 

is compromised if records were mislabelled, species were misidentified, coordinates were entered 

incorrectly, or if occurrence localities were not from a source habitat. If occurrences were from a 

sink habitat, the associated conditions would not represent those necessary to maintain its 

population without emigration and may therefore exaggerate tolerance ranges (Phillips et al., 2006). 

Large datasets including repeated surveys, such as the one used here, reduce the influence of 

records with errors such as these, given there are few in the dataset.  

 

Addressing spatial bias: Method 1 - Adjusting Background Extent 

There are a variety of methods available to attempt to account for sampling bias and ensure key 

assumptions are met (Mateo et al., 2010; Steven J Phillips et al., 2009; Syfert et al., 2013; VanDerWal 

et al., 2009). One common way is to adjust the background (BG) samples that Maxent takes 

(Anderson & Gonzalez, 2011; Anderson & Raza, 2010; Barve et al., 2011; Elith et al., 2011; Fourcade 

et al., 2014; Mateo et al., 2010; Phillips et al., 2009). Due to utilising PO, rather than PA data, Maxent 

uses BG points during model training instead of absence points (Elith et al., 2011). Maxent compares 

the relationship between environmental variables at locations occupied by the species with 

independently and randomly selected BG locations, where species presence is unknown (Merow et 

al., 2013; Muscarella et al., 2014). Ability to differentiate between presence and background 

locations based on environmental conditions largely determines the model quality (Merow et al., 

2013).  

By default, Maxent randomly extracts BG points from the entire study region and every pixel has the 

same probability that a BG point will be selected from it (Elith et al., 2011; Merow et al., 2013). This 

assumes the whole area was available for sampling and that the species were equally likely to be 

found anywhere within the region (Elith et al., 2011; Merow et al., 2013). These assumptions do not 

hold true given sampling bias in the dataset. To mitigate this, the area where BG points are taken 

from can be adjusted (Merow et al., 2013; Phillips & Dudík, 2008).  

Adjusting the area where BG points are taken from allows the user to exclude areas where there 

were suitable conditions but species had not been recorded either due to sampling bias or dispersal 

barriers (Anderson, 2015; Anderson & Raza, 2010; Barve et al., 2011). As well as the default entire 

background (EBG) method, two established approaches of adjusting BG areas were trialled: the 

Target Group Background (TGBG) method (Anderson, 2003; Phillips et al., 2006; Ponder et al., 2001) 

and the Restricted Background (RBG) method (Phillips, 2008).  
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Target Group Background  

This method uses collective occurrence records for many similar species (the target group), obtained 

via the same method, from the same database, under the assumption that those surveys would have 

recorded the focus species had it occurred there (Anderson, 2015; Anderson et al., 2003; Dudík et 

al., 2006; Fitzpatrick et al., 2013; Phillips et al., 2009; Ponder et al., 2001; Syfert et al., 2013). Based 

on the occurrence records of the target group, the sampling distribution can be estimated. This 

permits BG data to be taken only from the area that was sampled, rather than the whole region. This 

reduces the potential for BG points to be taken from areas with suitable conditions but no presence 

records, thus reducing the tendency to over fit to environmental conditions associated with sampled 

areas (Phillips & Dudík, 2008). When using this method, the BG sample theoretically reflects and 

therefore counteracts bias in the presence data (Dudík et al., 2006; Phillips & Dudík, 2008; Reddy & 

Dávalos, 2003; Zaniewski et al., 2002). Others have found the TGBG method significantly improves 

model performance and reduced the effect of sampling bias (Elith & Leathwick, 2007; Elith et al., 

2011; Phillips & Dudík, 2008). Here, the sampled area was estimated using the occurrence records of 

all marine species in the trawl database as the target group, filtered as previously mentioned for 

gear use and quality control. A number of coordinates associated with occurrence records in this 

target group were then randomly selected to be used as BG points in model training to apply the 

TGBG method (Figure 2.5B). A file was constructed from these coordinates for input into Maxent. 

Therefore, environmental conditions at the occurrence coordinates associated with the target 

species were contrasted with the environmental conditions at BG coordinates associated with the 

target group during model training when this BG method was implemented.  

Restricted Background  

This method is another way to adjust the area where BG points are taken from. This involved 

creating circular bounding buffer areas around each occurrence point, at a certain user-defined 

distance from each point, then merging these areas by dissolving interior lines so that an overall area 

encompassing all points remained (Phillips et al., 2009). BG points were randomly selected from 

within the merged region rather than from the entire study area. In this way, the area from which 

BG points could be taken was restricted. This method allows the BG data to better reflect the 

occurrence data bias, which encourages better distinction between presence and BG points (Phillips 

et al., 2009).  

Variability in MaxEnt predictions produced with different background extents has been 

comprehensively documented (Anderson & Gonzalez, 2011; Anderson & Raza, 2010; Baasch et al., 

2010; Barve et al., 2011; Elith et al., 2010; Elith et al., 2011; Giovanelli at al., 2010; Merow et al., 

2013; Phillips et al., 2009; VanDerWal et al., 2009; Yates et al., 2010). A more limited BG extent 
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encourages better differentiation between conditions in occupied and unoccupied areas, and 

therefore better recognition of distribution limiting conditions (Phillips, 2008). However, having 

more local BG points increases model complexity and therefore extrapolation when projecting the 

model to a different environment (Elith et al., 2011; VanDerWal et al., 2009). In this study three 

different restricted background extents were trailed to find an optimal distance: 10km (RBG1), 50km 

(RBG2) and 100km (RBG3). The three distances here were compared with the TGBG and EBG 

methods (Figure 2.5). Although the recommended restricted distance is one that reflects the 

average dispersal capability of the focal species, these data are not always available (Zeng et al., 

2016). Additionally, it was more feasible to trial the same set for each species, than to change it for 

each species being modelled in this study.  

 

Figure 2.5: Plots of the New Zealand region with examples of the different BG adjustment methods; 

The circles indicate points that were randomly selected as BG points dependant on the method 

used. A: EBG (Default BG of entire study region), B: TGBG, C: Three different RBG extents around 

orange roughy occurrence points as an example; Yellow = RBG1 (10km), Red = RBG2 (50km), Orange 

= RBG3 (100km). 

Addressing spatial bias: Method 2 - Spatial rarefication 

Spatial rarefication is another method commonly used to reduce sampling bias in presence only 

datasets (Boria et al., 2014; Fourcade et al., 2014). This involved adjusting the occurrence data itself 

before using it in the model.  Spatial rarefication was chosen rather than spatial thinning due to 

computational constraints of thinning on large datasets. The R package spThin was used to conduct 

spatial rarefication, using the function spRarefy (Aiello-Lammens et al., 2015a; AiŜƭƭƻπ[ŀƳƳŜƴǎ Ŝǘ ŀƭΦΣ 

2015b). Spatial rarefication was implemented for each species dataset, reducing occurrence points 

to only ones a certain, user defined distance away from each other (Boria et al., 2014). This was 

done by selecting a single record from each grid cell randomly in replicates of 10. Increasing the 

number of replicates did not change the points selected or number of records that remained.  

A B C 
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Spatial rarefication was conducted due to the large variation in the density of records between 

sampled areas (see Figure 2.2). If this was not corrected the model fit would favour the conditions 

where density of records was high and down weight conditions where there were fewer occurrence 

points. The aim of rarefication was to reduce effects of overrepresented localities in the dataset 

without reducing the signal of areas with suitable habitat (Aiellƻπ[ŀƳƳŜƴǎ Ŝǘ ŀƭΦΣ нлмрόōύΤ Anderson, 

2015). Rarefication should result in more equal weight given to all areas and reduce the effect of 

clustered records, which place artificial importance on the associated environment. Too much 

rarefication however may lead to smoothing the distribution of tolerable conditions and therefore 

overestimation of probability of presence (POP) at the edges of distributions, as well as 

underestimation of POP where conditions are most preferred (Fourcade et al., 2014).  

The distance at which points are set away from each by rarefication other should depend on the 

precision at which the data was collected and what is computationally feasible (Jeffery Hanson, 

University of Queensland, email correspondence). In this case, a distance of 10 km was selected 

because as the distance between the surveys tows that collected the data was often 3 nautical miles 

(5.556 km), following the standard operating procedure (Hurst et al., 1992; Stevens, 2014). If each 

tow was ~5 km, the midpoint has to be at least ~5 km away in order for there to be no overlap 

between tows (1 tow per 6 n.mile), so the minimum distance between each tow would have been 

roughly 10 km ό!ƛŜƭƭƻπ[ŀƳƳŜƴǎ Ŝǘ ŀƭΦΣ нлмрb). Therefore, this distance was selected as the maximum 

distance at which points should be set apart from each other. Finer spatial rarefication at 5km and 

1km, was also trailed (Table 2.1). 

Although rarefication deals with geographically clustered records it cannot account for the omission 

of areas of suitable habitat. Therefore, simultaneously using rarefication and different background 

adjustment methods (such as previously discussed TGBG or restricted BG methods) is potentially an 

effective method to reduce the effect of sample bias on models. Therefore combinations of these 

methods were trailed for each species. See Table 2.2 for all combinations of methods used. Effective 

reduction in sampling bias should result in a model with less overfitting and better predictive 

performance on independent evaluation data (Boria et al., 2014).  
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Table 2.1: Number of records for each target species before and after rarefication: 

Species No rarefication 
1km 

rarefication 
5km 

rarefication 
10km rarefication 

Hoki 14250 13137 9483 6535 

Snapper 3828 3099 1905 1171 

Tarakihi 5249 5001 3732 2404 

Trevally 1623 1368 964 683 

Scampi 1535 1483 1286 1023 

Orange roughy 9605 7554 3652 2093 

Southern Blue Whiting 1675 1654 1562 1427 

John Dory 3951 3360 2247 1402 

Ling 10967 10520 8504 6106 

Arrow Squid 4522 4338 3702 2854 

 

Table 2.2: Trial codes for Maxent runs showing the combinations of background methods, including 

Entire Background (EBG), three different Restricted Backgrounds (RBG) and Target Group 

Background (TGBG), and species occurrence data variations, including all records (no adjustment to 

occurrence records), removal of duplicates, and three spatial rarefication variations, used in Maxent 

trials. These are referred to throughout the results section in chapter three. 

BG method All records Duplicates 
not included 

Spatial 
rarefication 
(10 km) 

Spatial 
rarefication 
(5 km) 

Spatial 
rarefication  
(1 km) 

EBG 1a 2a 3a 4a 5a 

RBG 1 (10 km) 1b 2b 3b 4b 5b 

RBG 2 (50 km) 1c 2c 3c 4c 5c 

RBG 3 (100 km) 1d 2d 3d 4d 5d 

TGBG 1e 2e 3e 4e 5e 

 

2.3: Climate Data 

Obtaining and Preparing Climate layers 

Marine data for the modern and predicted future climates were obtained from Bio-ORACLE  

(http://www.bio -oracle.org/downloads-to-email.php) (Assis et al., 2018; Tyberghein et al., 2012). 

These data were available at a resolution of 5 arc-min. It has been suggested that higher resolution 

climate layers with finer grain sizes commonly give more accurate models, (Connor et al., 2018; 

Manzoor et al., 2018; Scales et al., 2017; Song et al., 2013) however this was all that was readily 

available and easily accessible. Data for 2040-2050 and 2090-2100 were downloaded for each 

different Representative Concentration Pathway Scenario (RCPS). These four climate scenarios are 

http://www.bio-oracle.org/downloads-to-email.php
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RCPS 2.6, a decline in greenhouse gas concentrations, RCPS 4.5 and RCPS 6.0 stabilisation of 

greenhouse gas concentrations, and the RCPS 8.5, an increasing emissions scenario (Van Vuuren et 

al., 2011). Bio-oracle provides both surface and deep sea environmental layers, however only 

surface layers were selected for consistency across models, and because deap sea environmental 

data has poorer collection coverage. Sea Surface Temperature (ST) and Surface Salinity (SS) 

covariates were downloaded (12 variables in total). Modern data were also taken from Bio-ORACLE 

of the same nature as the future data (5 arc-min, ST & SS covariates). Modern bathymetry climate 

layers were downloaded from MARSPEC (http://marspec.weebly.com/modern-data.html)(Sbrocco, 

2014), and added to all climate sets as depth data were not available on Bio-ORACLE.  

It is important to consider which environmental factors are used to train ENMs. The model assumes 

they are ecologically relevant to, independent of and have temporal correspondence to, species 

presences (Anderson, 2015; Phillips et al., 2006; Werkowska et al., 2017). Temperature and salinity 

were chosen as variables to use in this study as both have frequently been linked to marine species 

distributions (Balzano et al., 2010; Golikov et al., 2013; Khan et al., 2013; Kimmerer, 2002; Kültz, 

2015; Lehtonen et al., 2016; Smyth & Elliott, 2016). Including more variables often increases 

complexity and propensity for overfitting and complicates interpretation, while adding little further 

information to predictions (Werkowska et al., 2017). Furthermore, transferability of models when 

projecting to different time periods decreases with additional variables (Werkowska et al., 2017). For 

this reason, and for time and computational feasibility reasons, other variables from the large 

selection available from Bio-ORACLE were not included. Furthermore, predictor variables with varied 

effect on species distributions across the modelled region such as temperature average of the 

warmest month were omitted, as recommended by Peterson (2006) and Phillips et al., (2006). 

Temporal correspondence between the occurrence dataset and the climate data must also be 

considered. Temperature and salinity datasets were assembled from climate data collected between 

2002-2009 (Tyberghein et al., 2012). Although occurrence data was drawn from a larger time scale 

(1960-2017), it was assumed that two still relatively correspond, as most records have been 

collected between 1980 and 2017. Because of this and for the purpose of retaining as many records 

as possible, occurrence data were not further filtered to produce a narrower collection date range. 

However, it is acknowledged that it is possible that there have been changes in distributions or 

environmental responses over this time period. A species could be absent or depleted from an area 

in some years where it recently resided due to depletion of fish stocks from fishing, or other 

distributional fluctuations over this time period.  

Multicolinearilty between variables is often raised as an issue in ENM (Werkowska et al., 2017). 

Although collinearity does not considerably compromise model quality when using Maxent (De 
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Marco & Nobrega, 2018), it does complicate interpretation of response curves and variable 

contributions (Werkowska et al., 2017). Correlations between variables were assessed using the 

ENMTools R package (Warren et al., 2010). Almost all ST and SS variables were highly correlated with 

each other (>0.85), except for SS range and ST Range (Appendix B.1 & B.2). Because the aim was to 

investigate long-term change, mean SS and ST covariates were kept, and all other variables 

correlated with them discarded. SS range and ST range were also kept as these were not highly 

correlated with other variables and some species are influenced more by temperature extremes 

than averages as drivers of range shifts (Grieve et al., 2016; Hare et al., 2010; Hare et al., 2012; 

Morley et al., 2018a). Thus, a reduced variable set was assembled that included bathymetry, SS 

Mean, SS Range, ST Mean, and ST Range. Although this set of environmental variables may not be 

sufficient to describe all parameters of the fundamental niche for the study species, they will allow 

approximate estimation of geographic distributions based on a few key variables (Phillips et al., 

2006). 

All climate layers were subject to cropping and transformation in R Studio version 3.5.1. All 

downloaded climate data was in -180 to 180 format longitudinal format. In order to preserve all of 

New Zealand marine space in the models and avoid cut-off at the 180 International Date Line, these 

had to be converted to 0 to 360 longitudinal formats. These were then cropped to include only the 

desired study region and the final raster layers were able to be used as inputs for the Maxent 

algorithm. Summary plots for the climate layers used in this study can be found in Appendix C.  

2.4: Model Assembly 

2.4.1: Data Partitioning  

! ΨƳŀǎƪŜŘ ƎŜƻƎǊŀǇƘƛŎŀƭƭȅ ǎǘǊǳŎǘǳǊŜŘΩ Řŀǘŀ ǇŀǊǘƛǘƛƻƴƛƴƎ ƳŜǘƘƻŘ ǿŀǎ ǳsed where both occurrence and 

BG points were partitioned by geographic space. Occurrence and BG points were partitioned into 

four bins based on their position relative to latitude and longitude lines that divided occurrence 

localities as equally as possible (Muscarella et al., 2014; Radosavljevic & Anderson, 2014). After 

partitioning, four models were built iteratively for each combination of settings, using three bins for 

model training and the withheld bin for testing. Therefore, the calibration localities could not be 

next to or in the same geographic cluster as, evaluation localities and thus were independent from 

each other as recommended by Radosavljevic & Anderson (2014). This addresses the spatial 

autocorrelation issue that often arises when using random cross validation. In random cross 

validation evaluation data may be taken from areas of clustered localities (ie. due to sampling bias), 

and thus its independence from the calibration data is compromised. This often leads to over-

inflation of performance values ŀƴŘ ŘƻŜǎƴΩǘ ŀŘŘǊŜǎǎ ǎǇŀǘƛŀƭ ōƛŀǎ (Boria et al., 2014; Roberts et al., 

2017). The background localities in the same geographic area as the bin holding testing localities 
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were not included in the training phase (Phillips, 2008; Phillips & Dudík, 2008; Radosavljevic & 

Anderson, 2014). This method iǎ ŎŀƭƭŜŘ ΨǎǇŀǘƛŀƭ ōƭƻŎƪƛƴƎΩ ŀƴŘ ƛǎ ƻŦǘŜƴ ǳǎŜŘ ǘƻ ǊŜŘǳŎŜ ǎǇŀǘƛŀƭ-

autocorrelation between testing and training points (Boria et al., 2014; Hijmans & Elith, 2013; 

Wenger & Olden, 2012; Muscarella et al., 2014; Radosavljevic & Anderson, 2014; Veloz, 2009). 

Spatial blocking is recommended when model transfer across time or space is required, as it offers 

more accurate extrapolation to conditions outside of those not used in model training (Wenger & 

Olden, 2012; Muscarella et al., 2014; Zeng et al., 2016). The block method was implemented using 

the R package ENMeval (described below) using the ENMevaluate function (Muscarella et al., 2014).  

2.4.2: Maxent Runs 

The MaxEnt software (version 3.4.1) downloaded from 

https://biodiversityinformatics.amnh.org/open_source/maxent/ was used to perform ENM. It is 

necessary to perform species specific tuning when using Maxent by trialling a variety of different 

combinations of settings for each species (Morales et al., 2017; Phillips & Dudík, 2008). The two 

main parameters in Maxent that influence model results are regularization and choice of feature 

class (fc). Regularisation influences model complexity and affects how closely fit the model is. An 

increase in the regularisation multiplier (RM) penalises complexity and constrains potential for 

overfitting (Merow et al., 2013; Phillips et al., 2006; Phillips & Dudík, 2008; Phillips et al., 2004; 

Warren & Seifert, 2011). Feature class refers to the type of mathematical transformation of variables 

for modelling of complex relationships (Elith et al., 2010). For further detail on feature classes see 

Elith et al. (2011).  

To run MaxEnt trials the R package ENMeval was used. ENMeval implements Maxent via the dismo 

package and allows users to test a variety of combinations of RMs and fcs and simplifies the process 

of comparing many models at a time (Hijmans et al., 2011; Muscarella et al., 2014). Each ENMeval 

trail was run in parallel with RM values of 0.5-8 in increments of 0.5, and a variety of combinations of 

fcs including Linear (L), Quadratic (Q), Hinge (H), Product (P) and Threshold (T) feature classes. These 

were 'L','LQ','H','LQH','LQP', 'LQPT','LQPH', and 'LQHPT'.  

For each trial, 10,000 back ground points were randomly selected from the specified background 

extent as this typically achieves optimal performance (Elith et al., 2006). It is suggested that more BG 

points should be taken for larger datasets as more BG points typically equates to improved model 

predictive performance (Elith et al., 2006). Because all species datasets used here had under 10,000 

records or just over  increasing the number of BG points from 10,000 would mostly be redundant 

(Dudik et al., 2007).   

https://biodiversityinformatics.amnh.org/open_source/maxent/


30 

 

ENMeval runs were performed using the ENMevaluate function on the five different BG treatments 

(EBG, TGBG, & three different RBG extents) with five different occurrence datasets (all localities, no 

duplicates, and three spatially rarefied by different distances). Table 2.2 shows a summary of these 

method combinations used. Each run was performed using the modern climate layers obtained from 

Bio-ORACLE. Sixteen RMs and eight fc combinations on these 25 different treatments resulted in a 

total of 3200 models run per species, 32,000 overall.  

2.5: Model Selection 

Evaluation Metrics 

After each ENMevaluate call, the function produced a variety of evaluation metrics for each 

combination of settings. One of the most important of these is the Akaike Information Criterion 

(AICc). The AICc is a model selection uncertainty metric and reflects both goodness of fit and 

complexity. AICc is the version of AIC that was developed to correct for small sample size, and 

reduce the chances of the model being over fitted (Brewer et al., 2016). It is used to find optimal 

level of complexity and gives an overall indication of model quality (Radosavljevic & Anderson, 2014; 

Warren & Seifert, 2011). The philosophy underlying the AICc metric is that models that fit that data 

are rewarded while unnecessary parameters are penalised (Warren & Seifert, 2011). Complexity is 

estimated based on the lambda file produced at the end of each model run, in which all the 

parameters with a nonzero weight are counted to give the number of parameters used (Warren & 

Seifert, 2011). AICc is calculated on the full set of localities (both train and test) so is not affected by 

partitioning method (Muscarella et al., 2014; Warren & Seifert, 2011). Models with a delta(ҟ) AICc 

value under two have substantial support and a ҟ!L/Ŏ ƻŦ л ƛǎ ƛƴŘƛŎŀǘƛǾŜ ƻŦ ǘƘŜ ΨōŜǎǘΩ ƳƻŘŜƭs 

(Burnham & Anderson, 2004).  

Another important evaluatiƻƴ ƳŜǘǊƛŎ ǇǊƻŘǳŎŜŘ ƛǎ ǘƘŜ ΨƳŜŀƴ !¦/ΩΣ ǿƘƛŎƘ ǊŜŦŜǊǎ ǘƻ ǘƘŜ !ǊŜŀ ¦ƴŘŜǊ 

the operator Curve. This is based on the testing data (withheld from model construction), averaged 

across all partitioned bins (AUCtest) (Warren & Seifert, 2011). AUCtest is calculated in each iteration on 

the full set of background localities (Radosavljevic & Anderson, 2014). This presents the modelΩǎ 

ability to distinguish between conditions at occurrence and background localities, as it gives an 

estimate of the probability that a randomly chosen presence locality would be ranked above a 

randomly chosen absence locality (Boria et al., 2014; Muscarella et al., 2014; Phillips & Dudík, 2008; 

Phillips et al., 2004; Radosavljevic & Anderson, 2014). An AUC score of 0.5 or under indicates that 

the probability a randomly chosen presence is ranked above a randomly chosen background point is 

no better than random (Phillips & Dudík, 2008). The closer to 1 the AUC value is, the better the 

discriminatory ability. Usually, values above 0.75 are considered acceptable (Phillips & Dudík, 2008). 
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The AUC value for the full model, based on data used in model training, is also given by ENMevaluate 

(AUCtrain) (Warren & Seifert, 2011). 

AUC does not allow comparisons between models with different study regions, backgrounds, 

species, or test data, only between similar models having different settings (such as RMs and fcs) 

(Merow et al., 2013; Radosavljevic & Anderson, 2014). AUC is a threshold independent measure of 

discriminatory ability but gives no indication of model fit (Lobo et al., 2008; Peterson et al., 2011; 

Phillips et al., 2006; Phillips et al., 2004). AUC therefore tends to favour more complex models 

(Fourcade et al., 2014; Radosavljevic & Anderson, 2014; Warren & Seifert, 2011). Therefore, it is 

important to select models with low overfitting before assessing AUC values.  

ENMeval produces three metrics for estimating overfitting. The first is given as the Ψmean AUCDIFFΩ 

and is the calculated difference between calibration (AUCtrain) and evaluation (AUCtest) AUC scores, 

averaged across all bins (Boria et al., 2014; Warren & Seifert, 2011). Large difference between 

calibration and evaluation AUC equates to models over fit to the training data (Boria et al., 2014). 

This is because over fit models frequently perform well on calibration data, but not on evaluation 

data. If the difference is minimised, so is the potential for overfitting (Warren & Seifert, 2011).  

The other two metrics produced are threshold-dependent omission rates. Omission rates are 

indicative of the proportion of test localities that are omitted from the model, based on the 

threshold used (Boria et al., 2014). If more localities have been omitted than expected, the model is 

over fit (Boria et al., 2014; Radosavljevic & Anderson, 2014; Shcheglovitova & Anderson, 2013). 

Therefore, lower omission indicates better discrimination between suitable and unsuitable areas and 

generally higher model performance (Boria et al., 2014). Two kinds of omission rates are presented 

by ENMeval. The first is the minimum training presence threshold (ORMTP), presented by ENMeval as 

Ψmean ORminΩΣ ǿƘƛŎƘ sets the threshold at the lowest value of prediction for any pixel with a 

calibration locality (the training locality with the lowest predicted value) and so calculates omission 

rate on all the data. Thus there is an expected omission rate of 0% (Boria et al., 2014). An ORMTP 

value over zero indicates a level of overfitting. The second is the 10% calibration omission rate 

(mean OR10), which sets a threshold at a value that excludes 10% of training localities with the 

lowest predictions, giving an expected omission rate of 0.10 (Boria et al., 2014). Therefore, a mean 

OR10 above 0.10, indicates some level of over fit ting (Pearson et al. 2007). 

Base model selection 

The methods generated hundreds of alternative models for each species. The best model for each 

species was chosen based on two main points of consideration. The fist was based on the evaluation 

metrics and the other was based on biological interpretation of the models. Firstly, models were 
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filtered so that only those with a ҟ!L/Ŏ ƻŦ л ǿŜǊŜ ŎƻƴǎƛŘŜǊŜŘΦ Of these, models were selected based 

on those with the lowest overfitting metrics (OR10, ORMTP, and AUCDIFF). ORMTP was frequently so low 

in all models filters thus far that had little relevance during model selection. Then, only those with 

the highest discriminatory ability (AUCtest) were kept. In order to follow a species-specific selection 

process, and because evaluation metrics varied between species, the criteria for best models 

changed on a case-by-case basis to be more or less strict. Thus, the selection criteria was slightly 

different for each species, as is detailed further in the results. ҟAICc scores and AUC scores had 

selection criteria that was always the same, but the criteria for selecting those with low overfitting 

metrics varied considerably depending on the species. Six models were identified as the relative 

ΨōŜǎǘΩ ƳƻŘŜƭǎ for each species. These were subject to further analysis in order to select a base model 

to use for the climate change investigations.  

A biological interpretation approach was subsequently adopted to investigate which models had 

best captured the niche of each species. The sƛȄ ƳƻŘŜƭǎ ǿƛǘƘ ǘƘŜ ΨōŜǎǘΩ ŜǾŀƭǳŀǘƛƻƴ ƳŜǘǊƛŎǎ ǿŜǊŜ 

projected onto modern climate layers to visually inspect which best reflected the known current 

distribution of the target species. This was checked by expert opinion where possible, but 

alternatively density maps created with occurrence records were used as comparisons. Using current 

distributions to check model predictions assumes entire distributions are known and was therefore 

only used as an approximate guideline. Although over prediction of distributions was difficult to 

dispute, under prediction was generally an obvious error and could often be interpreted as a sign of 

overfitting. Analysis of the response curves further informed choice of base model. Models that 

showed no response to climate variables were excluded, provided the next met model was not 

substantially more over fit to the training data.  

This process reflects recommendations that low overfitting should be a primary criterion before 

discriminatory ability is taken into account, and that ecological interpretation is an important factor 

to consider when choosing models (Derville et al., 2018; Radosavljevic & Anderson, 2014; 

Shcheglovitova & Anderson, 2013). This allowed selection of base models that were not overly 

complex, had sufficient ability to distinguish preferred areas from not preferred areas, and will have 

better transferability to other time periods (Warren & Seifert, 2011, Werkowska et al., 2017). 

Variable Influence 

Variable influence and contribution to models was investigated by analysing response curves, 

permutation importance and limiting factor plots. Response curves indicated how the model 

responded to the co-variates and permutation importance indicated how much the variables 

contributed to the models. Permutation importance was used rather than percent contribution 
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because permutation importance is only measured from the final model rather than the path taken 

to obtain it (Phillips, 2006). Permutation importance is calculated by measuring how much AUC 

drops when the model is re-evaluated on each variable in turn, with its values randomly permuted 

throughout the training region to remove the effect of any environmental gradient or pattern they 

exhibit. The more the AUC score dropped, the more the variable contributed to the model.  

Limiting factor plots were constructed independently of the models using the R package Rmaxent 

(Baumgartner, 2018). These plots indicate the most limiting factor at each grid cell. This was 

calculated by giving each variable a new value at each cell equal to that of the mean value of that 

variable across the entire training region. If the predicted suitability increased as a result of this 

value change, more so than when any other variable is subject to the same treatment, then that 

variable was mostly responsible for limiting suitability in that grid cell and was thus the most limiting 

factor (Elith et al., 2010). Limiting factor plots were created for modern climates and the future 

climate under RCPS 8.5, to contrast the two most different climate effects on distributions. This was 

done for each species. 

2.6: Model Projection 

After model training on modern climate layers to estimate the climatic niche, the selected base 

models for each species were used for projections onto the four sets of future climate layers, in 2050 

and 2100. These projections presented Probability Of Presence maps (POP) for each species. It is 

implied that areas with high POP are areas with the most suitable habitat, or areas where that 

species will most likely be distributed based on the assumptions about the model. Thus for ease of 

interpretation, the phrases Ψpotential ŘƛǎǘǊƛōǳǘƛƻƴǎΩ ŀƴŘ Ψareas of suitable habitatΨ ŀǊŜ used 

interchangeably to describe areas with high POP in this thesis.  

Successful estimation of the modern species distribution by the model does not guarantee 

successful projection to different climates as the model may have poor transferability (Elith et al., 

2010). It is therefore important to critically evaluate ENM projections to different time periods or 

geographic regions. Projecting models to different time periods with different climates relies on 

good transferability and several assumptions. It is assumed that the relationship between the 

species and the variables used to train the models does not change between time periods 

(Anderson, 2015). This is also referred to as assuming niche conservatism or no niche evolution. The 

quicker environments change, the potential for sufficient adaptation is reduced, so the validity of 

this assumption may vary with climate scenario (Hoffmann & Sgro, 2011). When interpreting the 

predicted distributions, it is further assumed that other factors influencing species distributions 

including biotic interactions do not change between time periods. This is a harder assumption to 
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endorse due to the complexity of these interactions. Additionally, it is assumed that the constructed 

future climate datasets used to project models are as accurate as possible.   

2.6.1: Projection Evaluation 

Extrapolation  

Because model assembly used recent climatic conditions to train the model when it is projected to a 

different time period, and thus onto different variables, it is possible that these variables have values 

outside of the range on which the model was trained. Despite this, projection occurs as though the 

base model is being projected onto the same climate layers used for training. Therefore, MaxEnt 

may predict outside of the range of values it encountered during training. This process is called 

extrapolation (Phillips et al., 2006). How well it does this depends on how well the occurrence data 

represented the environmental conditions within the species preferred habitat. Spatially and 

temporally extensive occurrence records are advantageous for this purpose. 

By default, MaxEnt uses clamping to limit extrapolation by capping predictions to environmental 

conditions with values outside of the range of those used in training. Clamping is done so no values 

higher than the highest value and lower than the lowest value used in training remain in the climate 

layers that the model is being projected onto (Elith et al., 2011; Phillips et al., 2006). This clamps the 

predicted responses to the most alike conditions in the modern climate calibration data (Anderson & 

Raza, 2010; Phillips et al., 2006).  

Although this is the recommended standard practice, clamping itself can be problematic (Phillips et 

al., 2006). For example, clamping fixes response to temperatures higher than those encountered in 

training so that response is equal to response to the highest training temperature, and vice versa for 

lower temperatures. Therefore, temperatures far out of the range of those used in model training 

could are assigned the same predicted response as the most extreme temperatures used during 

model training. This may not be a realistic representation of species response to these new 

conditions and is referred to as ǘƘŜ ΨǇǊƻōƭŜƳ ƻŦ ƴƻǾŜƭ ŎƭƛƳŀǘŜ conditions.Ω Presence of clamping 

could be identified from the covariate response curves.  

Uncertainty 

To assess where there were novel conditions, and how they influenced future climates, Multivariate 

Environmental Similarity Surface (MESS) maps were produced (Elith et al., 2010; Radosavljevic & 

Anderson, 2014). MESS maps measure the similarity between the future environment and the 

training sample (Elith et al., 2010) and present this as estimates of relative uncertainty throughout 

the study region by assigning negative or positive values. Thus the similarity in climatic variables 

between any given locality in the projection dataset and the localities in the training dataset was 
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assessed (Elith et al., 2010). Negative values indicate sites where at least one variable had a value 

outside of the range encountered in the training data, thereby indicating novel conditions 

(conditions not experienced during model training). Conversely, the more positive the value the 

more similar the conditions were to those encountered during training. For each species, MESS maps 

for each climate scenario were produced. MESS analysis, in conjunction with response curves, were 

used to guide interpretations of the future climate predictions and identify how and where novel 

conditions affected predictions (Carneiro et al., 2016; Elith et al., 2010).  

Change in POP calculations 

Each projection map presented a continuous scale of probability of presence (POP) from 0-1. In 

order to estimate differences between different climate scenarios, this scale was split and assigned 

ŜǾŜƴƭȅ ƛƴǘƻ ƴƛƴŜ ŘƛŦŦŜǊŜƴǘ ΨōƛƴǎΩ ƛƴ ƛƴŎǊŜƳŜƴǘǎ ƻŦ лΦм όŜȄŎƭǳŘƛƴƎ ŀƭƭ ǎƛǘŜǎ ǿƛǘƘ ŀ tht ƻŦ ғлΦмύ ǎƻ ǘƘŀǘ 

the proportion of area on each map that fell into each bin could be calculated. The proportion of 

area within one bin was calculated as a proportion of the whole study region. The proportion of sites 

within each bin was calculated for all modern and future projections. A percentage change for all 

future projections was then calculated as the change in proportion of area that fell into each POP bin 

from the modern projection for that species. This was done to show the amount of habitat of 

different qualities or POP rankings that was gained or lost in response to different climate scenarios. 

All calculations were performed in R Studio version 3.5.1. 
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Chapter 3: Results 

This chapter presents results of the ten focal species, organised by species. It starts with the inshore 

species snapper, john dory, trevally and tarakihi then continues to the deep-water species scampi, 

orange roughy, southern blue whiting, hoki, ling and arrow squid. This section duplicates analyses 

for each species. An overall summary and a cross-species comparison of results is described in the 

final section (3.11: Results Summary). Full results of all ENMeval runs that produced thousands of 

different models for each species can be found in a dropbox folder accessed by following this link: 

https://www.dropbox.com/sh/ebhbskzka9ebm0t/AADxJWY6BrGK2bAcuaANFI4ha?dl=0 

 

3.1: SNAPPER (Chrysophrys auratus) 

Model Selection  

hŦ ŀƭƭ ƳƻŘŜƭǎ ƎŜƴŜǊŀǘŜŘΣ ҟ!L/ ǾŀƭǳŜs varied form 0 - 3145.1. Oƴƭȅ ƳƻŘŜƭǎ ǿƛǘƘ ŀ ҟ!L/ ƻŦ л ǿŜǊŜ 

selected. Train AUC scores varied from 0.6 - 0.98 and test AUC from 0.61 - 0.98. To select models 

with good discriminatory ability, only those >0.75 were selected. To select models with low 

overfitting, average test OR10 values varied from 0.06 - 0.23 but only those that were <0.15 were 

selected and average AUCDIFF varied from 0.001 - 0.113 but only those <0.05 were selected. Only the 

models that met these criteria were considered for base model selection (Table 3.1.1). When 

projected as modern probability distributions, all predictions appeared relatively similar (Figure 

3.1.1). When compared to the contemporary known distribution (Figure 3.1.2A), models 3c10 and 

3d10 (Figure 3.1.0A&B) over predicted snapper distribution around the top of the SI, while models 

5d11 and 5d12 (Figure 3.1.1E&F) appeared to under predict around the lower NI. Of the remaining 

two, model 3e70 (Figure 3.1.1C) showed lower overfitting values than all other models (OR10 = 0.072, 

AUCDIFF = 0.010) and was the only model ǘƘŀǘ ŘƛŘƴΩǘ ŜȄŎŜŜŘ ǘƘŜ мл҈ hw10 threshold recommended by 

Muscarella et al. (2014). Model 3e70 also had relatively good discriminatory ability with high AUC 

train and test scores above 0.9. Independent expert advice suggested model 3e70 was slightly more 

representative of the contemporary distribution (M Dunn, NIWI, pers. Comm). Model 3e70 was 

therefore selected from the six models as the base model for snapper projections.  

 

 

 

https://www.dropbox.com/sh/ebhbskzka9ebm0t/AADxJWY6BrGK2bAcuaANFI4ha?dl=0
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Figure 3.1.1: Snapper; Six best Maxent models projected on modern climate layers; 3c10 (A), 3d10 (B), 3e70 

(C), 4e28 (D), 5d11 (E), 5d12 (F). Colours reflect POP estimates between 0-1. Darker green indicates higher POP 

and red the reverse. 
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D E F 

POP 



38 

 

           T
a

b
le

 3
.1.1: S

n
a

p
p
e

r; E
N

M
e

v
a

l e
v
a

lu
a

tio
n
 m

e
trics o

f
 s

ix b
e

s
t m

o
d
e

ls. 

tria
l

m
o

d
eln

u
m

fea
tu

res
rm

tra
in

.A
U

C
a

vg
.tes

t.A
U

C
va

r.tes
t.A

U
C

a
vg

.d
iff.A

U
C

va
r.d

iff.A
U

C
a

vg
.tes

t.o
rM

T
P

va
r.tes

t.o
rM

T
P

a
vg

.tes
t.o

r1
0

p
c
t

va
r.tes

t.o
r1

0
p

c
t

d
elta

.A
IC

c
p

a
ra

m
eters

3
c

1
0

L
Q

H
1

0
.8

3
4

0
.8

2
2

0
.0

1
9

0
.0

3
5

0
.0

1
0

.0
0

2
0

0
.1

4
6

0
.0

2
4

0
8

1

3
d

1
0

L
Q

H
1

0
.8

9
5

0
.8

9
4

0
.0

0
7

0
.0

2
3

0
.0

0
5

0
.0

0
2

0
0

.1
4

8
0

.0
2

8
0

8
2

3
e

7
0

L
Q

H
6

0
.9

2
2

0
.9

2
8

0
.0

0
3

0
.0

1
0

0
.0

0
2

0
0

.0
7

2
0

.0
0

4
0

1
7

4
e

2
8

L
Q

H
2

.5
0

.9
2

9
0

.9
3

1
0

.0
0

4
0

.0
1

5
0

.0
0

2
0

0
0

.1
2

6
0

.0
3

3
0

3
5

5
d

1
1

L
Q

H
P

1
0

.9
3

2
0

.9
1

7
0

.0
1

3
0

.0
2

8
0

.0
0

7
0

.0
0

1
0

0
.1

4
8

0
.0

5
8

0
8

7

5
d

1
2

L
Q

H
P

T
1

0
.9

3
2

0
.9

1
7

0
.0

1
3

0
.0

2
8

0
.0

0
7

0
.0

0
1

0
0

.1
4

8
0

.0
5

8
0

8
7



39 

 

2050 Model Projections 

All 2050 RCPS projections were similar (Figure 3.1.2B-E). In the modern projection snapper were 

essentially absent from the South Island (SI), expect for a small area on the N/W corner. All 2050 

projections showed a moderate extension just over halfway down the West Coast of the SI, where 

POP increased from <0.4 to >0.7 in all RCPS. Around the entire North Island (NI) the POP was also 

predicted to increase substantially. In all future climate scenarios, areas with highly preferable 

climatic conditions, which therefore had the highest POP values, increased the most (POP >0.9 by 

300.04 - 412.88%), while areas with lower POP between 0.6 - 0.9 values increased comparatively 

less. Furthermore, the proportion of areas with POP values <0.6 decreased in all RCPS (Table 3.1.2).  

The 2050 MESS maps for all RCPS displayed little relative uncertainty (Appendix D.1). Relative 

certainty was highest in the RCPS 2.6 prediction particularly around the Chatham rise, Cook Strait 

and West Coast of the SI (Figure 3.1.3A). Most relative uncertainty was around the north of the NI in 

RCPS 8.5.  

2100 Model Projections 

The 2100 predictions showed more variation than the 2050 predictions, although similar patterns 

were observed (Figure 3.1.2G-J). A similar extension down the SI West Coast and general increase in 

POP around the NI was present in all 2100 RCPS, but these observations were more apparent in 

scenarios that deviated further from modern conditions. In the most ΨextremeΩ scenario RCPS 8.5, 

the probability distribution extended to the lower SI and to Stewart Island. Unlike the other 

scenarios, the RCPS 8.5 showed POP of snapper exceeding 0.5 around the bottom of the SI. POP 

along the east coast of the SI was still very low, even in the more extreme scenarios. Other notable 

places of predicted POP increase was the Hauraki Golf, Hawke Bay and Cook Strait/South Taranaki 

bight areas. Similarly to the 2050 predictions, in all scenarios areas of high POP increased the most 

(POP >0.9 by 220.46 - 897.95%), while areas with lower POP between 0.6 - 0.9 increased 

comparatively less. Most striking was the 897.95% increase in the proportion of areas with a POP of 

>0.9 in RCPS 8.5 (Table 3.1.2). The proportion of areas with POP values <0.5 decreased in all RCPS 

(Table 3.1.1).  

The 2100 MESS maps displayed more relative uncertainty than the 2050 MESS maps (Appendix D.1). 

Most relative uncertainty occurred around northern New Zealand. Uncertainty was most prevalent 

in the RCPS 8.5 prediction (Figure 3.1.3B), particularly from Hawke Bay northward.  
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Table 3.1.2: Snapper; Change in POP values compared to the modern projection for each of the four climate 

scenarios 2050 and 2100.  

  2050  2100 

POP  RCP2.6 RCP4.5 RCP6.0 RCP8.5  RCP2.6 RCP4.5 RCP6.0 RCP8.5 

0.9  342.727 386.731 300.041 412.881  220.458 333.099 564.953 897.946 

0.8  28.993 41.423 38.059 51.283  10.789 37.736 95.196 135.596 

0.7  32.578 33.618 33.923 36.447  2.76 29.956 53.6 74.732 

0.6  11.969 9.708 10.473 10.119  0.185 6.456 16.97 29.562 

0.5  -2.819 -4.766 -2.836 -5.065  -6.049 -6.432 -4.937 5.7 

0.4  -13.309 -15.049 -12.255 -15.74  -11.912 -15.568 -17.434 -7.137 

0.3  -22.16 -24.026 -21.734 -25.136  -18.503 -24.314 -25.348 -9.917 

0.2  -27.519 -29.088 -26.47 -29.231  -22.955 -29.141 -28.039 -9.667 

0.1  -25.489 -25.807 -24.226 -24.608  -21.451 -25.768 -13.974 -1.025 

 

 

 

Figure 3.1.3: Snapper; MESS Maps of RCPS 2.6 2050 (A) and RCPS 8.5 2100 (B). MESS maps for all climate 

scenarios can be found in Appendix D.1. Negative sites indicate most relative uncertainty and positive 

sites indicate most relative certainty.   
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Variable Influence 

The base model predicted that snapper were virtually absent at depths below -500m and had 

increased POP with mean temperature (Figure 3.1.4). Information beyond 20 degrees was outside of 

the range of the data so a constant value was assumed and POP was fixed at 20 degrees at about 

0.75. Temperature and salinity range had very little effect, and mean salinity did not contribute 

(Figure 3.1.4, Figure 3.1.5).   

The limiting factor plots showed that the main climatic variable limiting contemporary snapper 

distribution was surface temperature (ST) mean from the mid NI southward (Figure 3.1.6A). In the 

RCPS 8.5 100 limiting factor plot, this substantially shifted so that ST mean was the limiting factor in 

only the most south-eastern coastal regions of the SI (Figure 3.1.6B). Instead, the limiting climatic 

variable throughout most of coastal New Zealand in RCPS 8.5 was ST range.  

 

 
 

Figure 3.1.4: Snapper; Predictor response curves indicating how variables used for training affected the base 

model. Model predictions (red lines) and observations (blue data rug of deciles) are shown. The variables are 

bathymetry (A), surface salinity mean (B), surface salinity range (C), surface temperature mean (D), and surface 

temperature range (E). 
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Figure 3.1.5: Snapper; Predictor variable contribution based on permutation importance (Phillips, 2006). 

Variable names are shortened here to fit:  SS = Surface salinity, ST = Surface temperature, Rng = range, Bathy = 

bathymetry.  

 

 

Figure 3.1.6: Snapper; Limiting factors plots of Modern (A), and RCPS 8.5 in 2100 (A) climates. Colours indicate 

the most limiting variable to distribution in that area.
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3.2: JOHN DORY (Zeus faber) 

Model Selection 

Of all models generated, ҟ!L/ ǾŀƭǳŜǎ ǾŀǊƛŜŘ Ŧrom 0 - 3505.71. Oƴƭȅ ƳƻŘŜƭǎ ǿƛǘƘ ŀ ҟ!L/ ƻŦ л ǿŜǊŜ 

selected. Train AUC scores varied from 0.59 - 0.97 and test AUC varied from 0.56 - 0.97. To select 

models with good discriminatory ability only those >0.75 were selected. To select models with low 

overfitting, average test OR10 values varied from 0.05 - 0.27 but only those that were <0.16 were 

selected and average AUCDIFF varied from 0 - 0.135 but only those <0.05 were selected. Only the 

models that met these criteria were considered for base model selection (Table 3.2.1). All selected 

models had high discriminatory ability (>0.9). When projected onto modern climate layers, four 

models appeared to under-represent contemporary john dory distribution (Figure 3.2.1; A, B, C & F), 

while one over estimated this (Figure 3.2.1D). The remaining model 4e34 (Figure 3.2.1E), reflected 

the modern distribution well, and had comparatively low overfitting values, (AUCDIFF = 0.019, OR10 = 

0.129). Therefore, model 4e34 was selected as the base model for future predictions. 

 

Figure 3.2.1: John dory; Six best Maxent models projected on modern climate layers; 1e5 (A), 1e6 (B), 2e16 (C), 

3e69 (D), 4e34 (E), 5e21 (F). Colours reflect probability of presence estimates between 0-1. Darker green 

indicates higher POP and red the reverse.  
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2050 Model Projections 

All 2050 RCPS projections were relatively similar (Figure 3.2.2B-E). All 2050 projections showed 

extension down the West Coast of the SI to roughly the same degree. POP consistently increased 

throughout the potential john dory range. In all climate scenarios, areas with highly preferable 

climatic conditions, (and therefore had the highest POP values), increased the most (POP >0.9 by 

302.60 - 484.93%), while areas with lower POP increased much less or declined. The proportion of 

areas with POP values <0.7 decreased in all RCPS (Table 3.2.2).  

The 2050 MESS maps for all RCPS displayed little relative uncertainty (Appendix D.2, Figure 3.2.3A). 

Most uncertainty was in the northern regions around the NI. In the more extreme RCPS 8.5, regions 

with relatively high uncertainty also included the Hauraki Gulf and Hawke Bay. Areas with 

particularly high relative certainty in most RCPS 2050 MESS maps were the Chatham Rise, through 

Cook Strait, to the West side of the SI.  

2100 Model Projections 

Results for the 2100 predictions were more varied than the 2050 predictions, although similar 

patterns were observed (Figure 3.2G-J). There was again an increase in areas with high POP and 

decrease in areas with low POP. Areas with a POP >0.9 increased by 272.78 - 1126.02% and areas 

with a POP of >0.5 decreased by 3.34 - 19.93%. Again, suitable conditions around the NI were 

maintained and POP generally increased in all predictions. Probable distribution extended further 

down the West Coast of the SI and reached Stewart Island in both RCPS 6.0 and 8.5. RCPS 8.5 also 

showed a substantial increase in POP on the east coast of the SI.   

The 2100 MESS maps showed slightly more relative uncertainty, particularly in the most extreme 

scenario, RCPS 8.5 (Figure 3.2.3B, Appendix D.2). Most uncertainty was from the top of the NI to the 

middle of the NI, including Hawke Bay. Other areas with relatively high uncertainty included the bays 

on either side of Banks Peninsular on the East Coast of the SI, and around Karamea Bight at the 

north of the SI. 
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Table 3.2.2: John dory; Change in POP values compared to the modern projection for each of the four climate 

scenarios 2050 and 2100.  

 

 

Figure 3.2.3: John dory; MESS Maps of RCPS 2.6 2050 (A) and RCPS 8.5 2100 (B). MESS maps for all climate 

scenarios can be found in Appendix D.2. Negative sites indicate most relative uncertainty and positive 

sites indicate most relative certainty.   

 

 

 

 

 

  2050  2100 

POP  RCP2.6 RCP4.5 RCP6.0 RCP8.5  RCP2.6 RCP4.5 RCP6.0 RCP8.5 

0.9  340.203 474.433 302.599 484.93  272.781 437.77 796.408 1126.016 

0.8  58.057 57.812 21.086 61.044  25.887 50.126 102.45 176.681 

0.7  9.997 7.095 -6.614 1.923  -3.677 2.897 15.359 46.061 

0.6  -6.92 -11.133 -8.203 -15.45  -11.021 -12.177 -10.095 8.46 

0.5  -15.466 -19.986 -13.028 -23.344  -15.997 -19.934 -22.17 -3.343 

0.4  -21.867 -26.967 -18.859 -29.815  -20.463 -26.297 -29.501 -9.199 

0.3  -26.932 -31.388 -23.849 -34.545  -24.804 -30.7 -34.178 -12.853 

0.2  -29.288 -33.296 -25.618 -35.869  -26.457 -32.388 -35.04 -15.585 

0.1  -28.527 -32.571 -24.374 -34.452  -26.009 -31.465 -27.377 -15.599 

A B 

Relative  

Uncertainty 
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Variable Influence 

The base model predicted john dory were absent below -500m and had increased POP with mean 

temperature (Figure 3.4). Information beyond 19 degrees was outside of the range of data used to 

train the model so a constant value was assumed and POP was fixed at 19 degrees at about 0.95.  ST 

mean contributed most to the model, other climatic variables had comparatively little contribution 

(Figure 3.4 and 3.5).  

The modern liming factor plot (Figure 3.6A), showed ST mean was main the limiting climatic variable 

for contemporary john dory distribution, particularly in regions south of the mid NI. In the future 

limiting factor plot the area limited by ST mean was substantially reduced and confined to the lower 

eastern SI regions (Figure 3.6B). Instead, the limiting climatic variable in regions north of the mid SI 

and the majority of the future limiting factor plot was ST range.  

 

Figure 3.2.4: John dory; Predictor response curves indicating how variables used for training affected the base 

model. Model predictions (red lines) and observations (blue data rug of deciles) are shown. The variables are 

bathymetry (A), surface salinity mean (B), surface salinity range (C), surface temperature mean (D), and surface 

temperature range (E). 
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Figure 3.2.5: John dory; Predictor variable contribution based on permutation importance (Phillips, 2006). 

Variable names are shortened here to fit:  SS = Surface salinity, ST = Surface temperature, Rng = range, Bathy = 

bathymetry.  

 

 

Figure 3.2.6: John dory; Limiting factors plots of Modern (A), and RCPS 8.5 in 2100 (A) climates. Colours 

indicate the most limiting variable to distribution in that area.  
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3.3: TREVALLY (Pseudocaranx georgianus) 

Model Selection 

Models selected are shown ƛƴ ǘŀōƭŜ оΦмΦ ҟ!L/ ǾŀƭǳŜǎ ǾŀǊƛŜŘ ŦƻǊƳ л - мпунΦнΣ ƻƴƭȅ ƳƻŘŜƭǎ ǿƛǘƘ ŀ ҟ!L/ 

of 0 were selected. Train AUC scores varied from 0.59 - 0.98 and test AUC from 0.62 - 0.98. To select 

models with good discriminatory ability only those >0.75 were selected. To select models with low 

overfitting average test OR10 values varied from 0.036 - 0.19 but only those that were <0.11 were 

selected and AUCDIFF varied from 0.001 - 0.079 but only those <0.05 were selected. When projected, 

the selected models each matched the contemporary distribution relatively well (Figure 3.3.1) 

although, models 2d16 (Figure 3.3.1B), and 5d10 (Figure 3.3.1E) underestimated distribution in the 

southern NI and slightly overestimated around the Hauraki Gulf. Unfortunately, these two models 

were the only ones where climatic variables had any influence. Selecting models where an 

environmental response was detected rather than those where it was not (models 1e28, 2e27, 4e2, 

5e27) did not require a substantial trade-off in model quality as all six selected best models high 

discriminatory ability (AUCTRAIN and AUCTEST both >0.9) and low overfitting, with OR10 values (OR10 = 

0.076 - 0.107) barely exceeding the 10% OR10 threshold recommended by Muscarella et al. (2014) 

(Table 3.3.1). Model 2d16 had slightly lower overfitting metrics (AUCDIFF = 0.012, OR10= 0.09) (Table 

3.3.1). Model 2d16 was therefore selected as the base model. 
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Figure 3.3.1: Trevally; Six best Maxent models projected on modern climate layers; 1e28 (A), 2d16 (B), 2e27 

(C), 4e2 (D), 5d10 (E), 5e27 (F). Colours reflect probability of presence estimates between 0-1. Darker green 

indicates higher POP and red the reverse.  
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