Open Access Te Herenga Waka-Victoria University of Wellington
Browse
thesis_access.pdf (5.6 MB)

The Molecular Pharmacology of Pateamine A

Download (5.6 MB)
thesis
posted on 2021-11-11, 22:34 authored by Matthews, James Henry

Pateamine A is a cytotoxic terpenoid isolated from the marine sponge Mycale hentscheli that induces apoptosis in mammalian cell lines and is growth inhibitory to yeasts and fungi, yet shows no inhibitory action in prokaryotes. The targets of pateamine in mammalian cell lines were isolated and identified using a combination of affinity chromatography and mass spectrometry, putative targets included the DEAD-Box helicase eIF4A family of proteins, β-tubulin and actin. In vitro assessment of tubulin and actin polymerization showed pateamine was able to affect them only at high micromolar concentrations, whereas the effect on eIF4A in vitro was shown by others to occur at nanomolar concentrations. Additionally, pateamine was shown to inhibit cap-dependent protein synthesis in vivo, suggesting eIF4A as a primary target. The generation of a pateamine resistance-conferring mutation in the yeast eIF4A encoding gene TIF1, suggested further that eIF4A is a primary target in both mammalian and yeast cells, and allows the speculation of the position of the binding site for pateamine on the N-terminal lobe of eIF4A and the proposal of potential covalent interaction between this drug and its target. Given the size of the DEAD-Box helicase family, all of which share considerable homology with the eIF4As, FAL1 especially which is essential for rRNA maturation, a chemogenomic screen was performed in an attempt to establish the breadth of functional interactions of pateamine. The results of hierarchical clustering of these screen results suggest that pateamine has a mode-of-action distinct from other compounds screened previously, despite its effect on protein synthesis it failed to cluster with any other protein synthesis inhibitors regardless of their separate mechanisms, though, as a class, protein synthesis inhibitors were not found to form a discrete cluster in any of the variations of cluster analysis performed. Functional analysis, by GO term enrichment, of the genes whose deletions are hypersensitive to pateamine indicates that deletions of genes involved in numerous aspects of RNA metabolism affect pateamine sensitivity, however clear results regarding the involvement of FAL1 or any other non-eIF4A target in pateamine’s mode-of-action were not found.

History

Copyright Date

2010-01-01

Date of Award

2010-01-01

Publisher

Te Herenga Waka—Victoria University of Wellington

Rights License

Author Retains Copyright

Degree Discipline

Biomedical Science

Degree Grantor

Te Herenga Waka—Victoria University of Wellington

Degree Level

Doctoral

Degree Name

Doctor of Philosophy

Victoria University of Wellington Item Type

Awarded Doctoral Thesis

Language

en_NZ

Victoria University of Wellington School

School of Biological Sciences

Advisors

Teesdale-Spittle, Paul; Northcote, Peter