Open Access Te Herenga Waka-Victoria University of Wellington
Browse
thesis_access.pdf (2.06 MB)

Using Paleoecological Proxies to Determine Holocene Environmental Change: A Case Study at Onaero Beach, North Taranaki

Download (2.06 MB)
thesis
posted on 2021-11-15, 12:07 authored by Rachel Skudder

A multi-proxy paleoecological and sedimentological record for the last ~8.3kyr is extracted from a 2.1m coastal seacliff at Onaero Beach, North Taranaki. This record is used to infer both local environmental changes including shoreline, coastal conditions, as well as regional changes in atmospheric circulation and climate wetness. Analysis of diatom and pollen populations, particle size, and loss on ignition provide the raw data from which inferences regarding salinity and vegetation are made. Changes are tied to a chronology determined through radiocarbon ages and tephrochronology.  Key objectives of this study are: (1) To characterize changes in salinity and relative shoreline position at Onaero Beach (2) To characterise changes in vegetation and relate these changes to overall state of the climate through the Holocene (3) Compare the results of this study with others from New Zealand and the wider south pacific to investigate how the Onaero Beach section fits in both a regional and global context.  Diatom analysis of the Onaero section revealed the dominance of brackish to marine species which suddenly at 7.3ka after which time diatom assemblages were dominated by fresh and salt intolerant species. The marine to freshwater transition represents a transition from a brackish to freshwater coastal lagoon.  Pollen analysis of the Onaero Beach section indicates the region was dominated by podocarp forest. The increasing dominance of Dacrydium and decline in other podocarps suggests an increase in overall climate wetness.  The disappearance of pollen in conjunction with the deposition of tephra at ~4.15ka is not conclusive proof of, but certainly fits with, the idea of a significant climatic event occurring at ~4.2ka resulting in a reversal of the current prevailing wind direction and supports the case for a formal Middle/Late Holocene boundary at this time.

History

Copyright Date

2015-01-01

Date of Award

2015-01-01

Publisher

Te Herenga Waka—Victoria University of Wellington

Rights License

Author Retains Copyright

Degree Discipline

Geology

Degree Grantor

Te Herenga Waka—Victoria University of Wellington

Degree Level

Masters

Degree Name

Master of Science

Victoria University of Wellington Item Type

Awarded Research Masters Thesis

Language

en_NZ

Victoria University of Wellington School

School of Geography, Environment and Earth Sciences

Advisors

Newnham, Rewi; Alloway, Brent