Open Access Te Herenga Waka-Victoria University of Wellington
Browse
thesis_access.pdf (3.11 MB)

Chemical genetic interactions of New Zealand bee products in Saccharomyces cerevisiae

Download (3.11 MB)
thesis
posted on 2021-11-15, 13:57 authored by Fadzilah, Nazmi bin Harith

Propolis, bee venom and bee pollen all have been used by humans traditionally for various medicinal purposes. Studies of these products have been limited primarily to antimicrobial, antifungal, anticancer and free radical scavenging properties. The mechanisms of action of these products remain largely unknown. This study investigates the biological effects of propolis, bee venom and bee pollen using chemical genomics and the yeast model organism. These products are screened against genome-wide yeast mutant libraries to determine the genes, proteins, and pathways that are targets of these products. I identified that propolis chelates iron and consequently creates an iron-deficient condition, which results in the upregulation of plasma membrane and vacuolar high-affinity iron transporters to maximise iron acquisition. Bee venom inhibited the biosynthesis of phosphatidylcholine via Opi3p that catalyses the final two steps of phosphatidylcholine biosynthesis within the CDP-ethanolamine pathway. Bee pollen showed a potential effect on GDP-mannose transport in which the GDP-mannose transport mutants confer hypersensitivity against bee pollen treatment.

History

Copyright Date

2015-01-01

Date of Award

2015-01-01

Publisher

Te Herenga Waka—Victoria University of Wellington

Rights License

Author Retains Copyright

Degree Discipline

Biotechnology

Degree Grantor

Te Herenga Waka—Victoria University of Wellington

Degree Level

Masters

Degree Name

Master of Science

ANZSRC Type Of Activity code

970106 Expanding Knowledge in the Biological Sciences

Victoria University of Wellington Item Type

Awarded Research Masters Thesis

Language

en_NZ

Victoria University of Wellington School

School of Biological Sciences

Advisors

Munkacsi, Andrew