Open Access Te Herenga Waka-Victoria University of Wellington
Browse
thesis_access.pdf (3.49 MB)

Reproductive timing and investment decisions of a protogynous hermaphroditic coral reef fish species

Download (3.49 MB)
thesis
posted on 2021-12-08, 19:43 authored by Pauline Mitterwallner

Life-history theory suggests that an organism must balance its available energy between two competing physiological processes to maximize fitness: reproduction and somatic growth. Energetic trade-offs are a fundamental concept of life history theory and form the basis of intra- and inter-specific variation in life-history strategies. In fishes, reproduction-growth trade-offs are an essential component of life-history optimization. This is particularly true for species with protogynous sex- change (the most common reproductive mode among coral reef fish species), where reproductive success rapidly and disproportionally increases with body size/ corresponding social status. In such systems, lifetime fitness is inherently linked to patterns of growth and energy allocation strategies determined by an individual’s size-specific rank within the dominance hierarchy. However, energy allocation strategies in a protogynous species may not only be a function of body size. Coral reef fish species are exposed to extremely variable environmental conditions and this can favour the evolution of strategies that utilize good times and avoid disadvantageous times for reproduction. Consequently, size- specific parental investment decisions may vary greatly in time and space according to environmental cues. My thesis focuses on the protogynous reef fish, Thalassoma hardwicke (the sixbar wrasse), which is extremely abundant on shallow coral reefs throughout the Indo-Pacific region. Specifically, I evaluate patterns of spawning and reproductive investment as a function of body size, social status, lunar phase and other environmental parameters. I address the question of whether females/males of differing size make different fitness-related decisions when away from spawning sites, and I evaluate context-dependency in these decisions. Finally, I will attempt to reconstruct the developmental histories (e.g., larval growth rates) of individuals from otoliths to evaluate potential relationships between developmental histories and fitness attributes.

History

Copyright Date

2020-01-01

Date of Award

2020-01-01

Publisher

Te Herenga Waka—Victoria University of Wellington

Rights License

Author Retains Copyright

Degree Discipline

Marine Biology

Degree Grantor

Te Herenga Waka—Victoria University of Wellington

Degree Level

Doctoral

Degree Name

Doctor of Philosophy

ANZSRC Type Of Activity code

1 PURE BASIC RESEARCH

Victoria University of Wellington Item Type

Awarded Doctoral Thesis

Language

en_NZ

Victoria University of Wellington School

School of Biological Sciences

Advisors

Shima, Jeffrey